| Step |
Hyp |
Ref |
Expression |
| 0 |
|
coppc |
|- oppCat |
| 1 |
|
vf |
|- f |
| 2 |
|
cvv |
|- _V |
| 3 |
1
|
cv |
|- f |
| 4 |
|
csts |
|- sSet |
| 5 |
|
chom |
|- Hom |
| 6 |
|
cnx |
|- ndx |
| 7 |
6 5
|
cfv |
|- ( Hom ` ndx ) |
| 8 |
3 5
|
cfv |
|- ( Hom ` f ) |
| 9 |
8
|
ctpos |
|- tpos ( Hom ` f ) |
| 10 |
7 9
|
cop |
|- <. ( Hom ` ndx ) , tpos ( Hom ` f ) >. |
| 11 |
3 10 4
|
co |
|- ( f sSet <. ( Hom ` ndx ) , tpos ( Hom ` f ) >. ) |
| 12 |
|
cco |
|- comp |
| 13 |
6 12
|
cfv |
|- ( comp ` ndx ) |
| 14 |
|
vu |
|- u |
| 15 |
|
cbs |
|- Base |
| 16 |
3 15
|
cfv |
|- ( Base ` f ) |
| 17 |
16 16
|
cxp |
|- ( ( Base ` f ) X. ( Base ` f ) ) |
| 18 |
|
vz |
|- z |
| 19 |
18
|
cv |
|- z |
| 20 |
|
c2nd |
|- 2nd |
| 21 |
14
|
cv |
|- u |
| 22 |
21 20
|
cfv |
|- ( 2nd ` u ) |
| 23 |
19 22
|
cop |
|- <. z , ( 2nd ` u ) >. |
| 24 |
3 12
|
cfv |
|- ( comp ` f ) |
| 25 |
|
c1st |
|- 1st |
| 26 |
21 25
|
cfv |
|- ( 1st ` u ) |
| 27 |
23 26 24
|
co |
|- ( <. z , ( 2nd ` u ) >. ( comp ` f ) ( 1st ` u ) ) |
| 28 |
27
|
ctpos |
|- tpos ( <. z , ( 2nd ` u ) >. ( comp ` f ) ( 1st ` u ) ) |
| 29 |
14 18 17 16 28
|
cmpo |
|- ( u e. ( ( Base ` f ) X. ( Base ` f ) ) , z e. ( Base ` f ) |-> tpos ( <. z , ( 2nd ` u ) >. ( comp ` f ) ( 1st ` u ) ) ) |
| 30 |
13 29
|
cop |
|- <. ( comp ` ndx ) , ( u e. ( ( Base ` f ) X. ( Base ` f ) ) , z e. ( Base ` f ) |-> tpos ( <. z , ( 2nd ` u ) >. ( comp ` f ) ( 1st ` u ) ) ) >. |
| 31 |
11 30 4
|
co |
|- ( ( f sSet <. ( Hom ` ndx ) , tpos ( Hom ` f ) >. ) sSet <. ( comp ` ndx ) , ( u e. ( ( Base ` f ) X. ( Base ` f ) ) , z e. ( Base ` f ) |-> tpos ( <. z , ( 2nd ` u ) >. ( comp ` f ) ( 1st ` u ) ) ) >. ) |
| 32 |
1 2 31
|
cmpt |
|- ( f e. _V |-> ( ( f sSet <. ( Hom ` ndx ) , tpos ( Hom ` f ) >. ) sSet <. ( comp ` ndx ) , ( u e. ( ( Base ` f ) X. ( Base ` f ) ) , z e. ( Base ` f ) |-> tpos ( <. z , ( 2nd ` u ) >. ( comp ` f ) ( 1st ` u ) ) ) >. ) ) |
| 33 |
0 32
|
wceq |
|- oppCat = ( f e. _V |-> ( ( f sSet <. ( Hom ` ndx ) , tpos ( Hom ` f ) >. ) sSet <. ( comp ` ndx ) , ( u e. ( ( Base ` f ) X. ( Base ` f ) ) , z e. ( Base ` f ) |-> tpos ( <. z , ( 2nd ` u ) >. ( comp ` f ) ( 1st ` u ) ) ) >. ) ) |