Description: Define an opposite ring, which is the same as the original ring but with multiplication written the other way around. (Contributed by Mario Carneiro, 1-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | df-oppr | |- oppR = ( f e. _V |-> ( f sSet <. ( .r ` ndx ) , tpos ( .r ` f ) >. ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | coppr | |- oppR |
|
1 | vf | |- f |
|
2 | cvv | |- _V |
|
3 | 1 | cv | |- f |
4 | csts | |- sSet |
|
5 | cmulr | |- .r |
|
6 | cnx | |- ndx |
|
7 | 6 5 | cfv | |- ( .r ` ndx ) |
8 | 3 5 | cfv | |- ( .r ` f ) |
9 | 8 | ctpos | |- tpos ( .r ` f ) |
10 | 7 9 | cop | |- <. ( .r ` ndx ) , tpos ( .r ` f ) >. |
11 | 3 10 4 | co | |- ( f sSet <. ( .r ` ndx ) , tpos ( .r ` f ) >. ) |
12 | 1 2 11 | cmpt | |- ( f e. _V |-> ( f sSet <. ( .r ` ndx ) , tpos ( .r ` f ) >. ) ) |
13 | 0 12 | wceq | |- oppR = ( f e. _V |-> ( f sSet <. ( .r ` ndx ) , tpos ( .r ` f ) >. ) ) |