Metamath Proof Explorer


Definition df-oppr

Description: Define an opposite ring, which is the same as the original ring but with multiplication written the other way around. (Contributed by Mario Carneiro, 1-Dec-2014)

Ref Expression
Assertion df-oppr
|- oppR = ( f e. _V |-> ( f sSet <. ( .r ` ndx ) , tpos ( .r ` f ) >. ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 coppr
 |-  oppR
1 vf
 |-  f
2 cvv
 |-  _V
3 1 cv
 |-  f
4 csts
 |-  sSet
5 cmulr
 |-  .r
6 cnx
 |-  ndx
7 6 5 cfv
 |-  ( .r ` ndx )
8 3 5 cfv
 |-  ( .r ` f )
9 8 ctpos
 |-  tpos ( .r ` f )
10 7 9 cop
 |-  <. ( .r ` ndx ) , tpos ( .r ` f ) >.
11 3 10 4 co
 |-  ( f sSet <. ( .r ` ndx ) , tpos ( .r ` f ) >. )
12 1 2 11 cmpt
 |-  ( f e. _V |-> ( f sSet <. ( .r ` ndx ) , tpos ( .r ` f ) >. ) )
13 0 12 wceq
 |-  oppR = ( f e. _V |-> ( f sSet <. ( .r ` ndx ) , tpos ( .r ` f ) >. ) )