Description: Define the class abstraction (class builder) of a collection of nested ordered pairs (for use in defining operations). This is a special case of Definition 4.16 of TakeutiZaring p. 14. Normally x , y , and z are distinct, although the definition doesn't strictly require it. See df-ov for the value of an operation. The brace notation is called "class abstraction" by Quine; it is also called a "class builder" in the literature. The value of an operation given by a class abstraction is given by ovmpo . (Contributed by NM, 12-Mar-1995)
Ref | Expression | ||
---|---|---|---|
Assertion | df-oprab | |- { <. <. x , y >. , z >. | ph } = { w | E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | vx | |- x |
|
1 | vy | |- y |
|
2 | vz | |- z |
|
3 | wph | |- ph |
|
4 | 3 0 1 2 | coprab | |- { <. <. x , y >. , z >. | ph } |
5 | vw | |- w |
|
6 | 5 | cv | |- w |
7 | 0 | cv | |- x |
8 | 1 | cv | |- y |
9 | 7 8 | cop | |- <. x , y >. |
10 | 2 | cv | |- z |
11 | 9 10 | cop | |- <. <. x , y >. , z >. |
12 | 6 11 | wceq | |- w = <. <. x , y >. , z >. |
13 | 12 3 | wa | |- ( w = <. <. x , y >. , z >. /\ ph ) |
14 | 13 2 | wex | |- E. z ( w = <. <. x , y >. , z >. /\ ph ) |
15 | 14 1 | wex | |- E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) |
16 | 15 0 | wex | |- E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) |
17 | 16 5 | cab | |- { w | E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) } |
18 | 4 17 | wceq | |- { <. <. x , y >. , z >. | ph } = { w | E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) } |