| Step |
Hyp |
Ref |
Expression |
| 0 |
|
covol |
|- vol* |
| 1 |
|
vx |
|- x |
| 2 |
|
cr |
|- RR |
| 3 |
2
|
cpw |
|- ~P RR |
| 4 |
|
vy |
|- y |
| 5 |
|
cxr |
|- RR* |
| 6 |
|
vf |
|- f |
| 7 |
|
cle |
|- <_ |
| 8 |
2 2
|
cxp |
|- ( RR X. RR ) |
| 9 |
7 8
|
cin |
|- ( <_ i^i ( RR X. RR ) ) |
| 10 |
|
cmap |
|- ^m |
| 11 |
|
cn |
|- NN |
| 12 |
9 11 10
|
co |
|- ( ( <_ i^i ( RR X. RR ) ) ^m NN ) |
| 13 |
1
|
cv |
|- x |
| 14 |
|
cioo |
|- (,) |
| 15 |
6
|
cv |
|- f |
| 16 |
14 15
|
ccom |
|- ( (,) o. f ) |
| 17 |
16
|
crn |
|- ran ( (,) o. f ) |
| 18 |
17
|
cuni |
|- U. ran ( (,) o. f ) |
| 19 |
13 18
|
wss |
|- x C_ U. ran ( (,) o. f ) |
| 20 |
4
|
cv |
|- y |
| 21 |
|
c1 |
|- 1 |
| 22 |
|
caddc |
|- + |
| 23 |
|
cabs |
|- abs |
| 24 |
|
cmin |
|- - |
| 25 |
23 24
|
ccom |
|- ( abs o. - ) |
| 26 |
25 15
|
ccom |
|- ( ( abs o. - ) o. f ) |
| 27 |
22 26 21
|
cseq |
|- seq 1 ( + , ( ( abs o. - ) o. f ) ) |
| 28 |
27
|
crn |
|- ran seq 1 ( + , ( ( abs o. - ) o. f ) ) |
| 29 |
|
clt |
|- < |
| 30 |
28 5 29
|
csup |
|- sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) |
| 31 |
20 30
|
wceq |
|- y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) |
| 32 |
19 31
|
wa |
|- ( x C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) |
| 33 |
32 6 12
|
wrex |
|- E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( x C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) |
| 34 |
33 4 5
|
crab |
|- { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( x C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } |
| 35 |
34 5 29
|
cinf |
|- inf ( { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( x C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } , RR* , < ) |
| 36 |
1 3 35
|
cmpt |
|- ( x e. ~P RR |-> inf ( { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( x C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } , RR* , < ) ) |
| 37 |
0 36
|
wceq |
|- vol* = ( x e. ~P RR |-> inf ( { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( x C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } , RR* , < ) ) |