Step |
Hyp |
Ref |
Expression |
0 |
|
covol |
|- vol* |
1 |
|
vx |
|- x |
2 |
|
cr |
|- RR |
3 |
2
|
cpw |
|- ~P RR |
4 |
|
vy |
|- y |
5 |
|
cxr |
|- RR* |
6 |
|
vf |
|- f |
7 |
|
cle |
|- <_ |
8 |
2 2
|
cxp |
|- ( RR X. RR ) |
9 |
7 8
|
cin |
|- ( <_ i^i ( RR X. RR ) ) |
10 |
|
cmap |
|- ^m |
11 |
|
cn |
|- NN |
12 |
9 11 10
|
co |
|- ( ( <_ i^i ( RR X. RR ) ) ^m NN ) |
13 |
1
|
cv |
|- x |
14 |
|
cioo |
|- (,) |
15 |
6
|
cv |
|- f |
16 |
14 15
|
ccom |
|- ( (,) o. f ) |
17 |
16
|
crn |
|- ran ( (,) o. f ) |
18 |
17
|
cuni |
|- U. ran ( (,) o. f ) |
19 |
13 18
|
wss |
|- x C_ U. ran ( (,) o. f ) |
20 |
4
|
cv |
|- y |
21 |
|
c1 |
|- 1 |
22 |
|
caddc |
|- + |
23 |
|
cabs |
|- abs |
24 |
|
cmin |
|- - |
25 |
23 24
|
ccom |
|- ( abs o. - ) |
26 |
25 15
|
ccom |
|- ( ( abs o. - ) o. f ) |
27 |
22 26 21
|
cseq |
|- seq 1 ( + , ( ( abs o. - ) o. f ) ) |
28 |
27
|
crn |
|- ran seq 1 ( + , ( ( abs o. - ) o. f ) ) |
29 |
|
clt |
|- < |
30 |
28 5 29
|
csup |
|- sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) |
31 |
20 30
|
wceq |
|- y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) |
32 |
19 31
|
wa |
|- ( x C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) |
33 |
32 6 12
|
wrex |
|- E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( x C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) |
34 |
33 4 5
|
crab |
|- { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( x C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } |
35 |
34 5 29
|
cinf |
|- inf ( { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( x C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } , RR* , < ) |
36 |
1 3 35
|
cmpt |
|- ( x e. ~P RR |-> inf ( { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( x C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } , RR* , < ) ) |
37 |
0 36
|
wceq |
|- vol* = ( x e. ~P RR |-> inf ( { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( x C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } , RR* , < ) ) |