Metamath Proof Explorer


Definition df-p0

Description: Define poset zero. (Contributed by NM, 12-Oct-2011)

Ref Expression
Assertion df-p0
|- 0. = ( p e. _V |-> ( ( glb ` p ) ` ( Base ` p ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cp0
 |-  0.
1 vp
 |-  p
2 cvv
 |-  _V
3 cglb
 |-  glb
4 1 cv
 |-  p
5 4 3 cfv
 |-  ( glb ` p )
6 cbs
 |-  Base
7 4 6 cfv
 |-  ( Base ` p )
8 7 5 cfv
 |-  ( ( glb ` p ) ` ( Base ` p ) )
9 1 2 8 cmpt
 |-  ( p e. _V |-> ( ( glb ` p ) ` ( Base ` p ) ) )
10 0 9 wceq
 |-  0. = ( p e. _V |-> ( ( glb ` p ) ` ( Base ` p ) ) )