| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cpadd |
|- +P |
| 1 |
|
vl |
|- l |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vm |
|- m |
| 4 |
|
catm |
|- Atoms |
| 5 |
1
|
cv |
|- l |
| 6 |
5 4
|
cfv |
|- ( Atoms ` l ) |
| 7 |
6
|
cpw |
|- ~P ( Atoms ` l ) |
| 8 |
|
vn |
|- n |
| 9 |
3
|
cv |
|- m |
| 10 |
8
|
cv |
|- n |
| 11 |
9 10
|
cun |
|- ( m u. n ) |
| 12 |
|
vp |
|- p |
| 13 |
|
vq |
|- q |
| 14 |
|
vr |
|- r |
| 15 |
12
|
cv |
|- p |
| 16 |
|
cple |
|- le |
| 17 |
5 16
|
cfv |
|- ( le ` l ) |
| 18 |
13
|
cv |
|- q |
| 19 |
|
cjn |
|- join |
| 20 |
5 19
|
cfv |
|- ( join ` l ) |
| 21 |
14
|
cv |
|- r |
| 22 |
18 21 20
|
co |
|- ( q ( join ` l ) r ) |
| 23 |
15 22 17
|
wbr |
|- p ( le ` l ) ( q ( join ` l ) r ) |
| 24 |
23 14 10
|
wrex |
|- E. r e. n p ( le ` l ) ( q ( join ` l ) r ) |
| 25 |
24 13 9
|
wrex |
|- E. q e. m E. r e. n p ( le ` l ) ( q ( join ` l ) r ) |
| 26 |
25 12 6
|
crab |
|- { p e. ( Atoms ` l ) | E. q e. m E. r e. n p ( le ` l ) ( q ( join ` l ) r ) } |
| 27 |
11 26
|
cun |
|- ( ( m u. n ) u. { p e. ( Atoms ` l ) | E. q e. m E. r e. n p ( le ` l ) ( q ( join ` l ) r ) } ) |
| 28 |
3 8 7 7 27
|
cmpo |
|- ( m e. ~P ( Atoms ` l ) , n e. ~P ( Atoms ` l ) |-> ( ( m u. n ) u. { p e. ( Atoms ` l ) | E. q e. m E. r e. n p ( le ` l ) ( q ( join ` l ) r ) } ) ) |
| 29 |
1 2 28
|
cmpt |
|- ( l e. _V |-> ( m e. ~P ( Atoms ` l ) , n e. ~P ( Atoms ` l ) |-> ( ( m u. n ) u. { p e. ( Atoms ` l ) | E. q e. m E. r e. n p ( le ` l ) ( q ( join ` l ) r ) } ) ) ) |
| 30 |
0 29
|
wceq |
|- +P = ( l e. _V |-> ( m e. ~P ( Atoms ` l ) , n e. ~P ( Atoms ` l ) |-> ( ( m u. n ) u. { p e. ( Atoms ` l ) | E. q e. m E. r e. n p ( le ` l ) ( q ( join ` l ) r ) } ) ) ) |