Description: Define the partition predicate (read: A is a partition by R ). Alternative definition is dfpart2 . The binary partition and the partition predicate are the same if A and R are sets, cf. brpartspart . (Contributed by Peter Mazsa, 12-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-part | |- ( R Part A <-> ( Disj R /\ R DomainQs A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cR | |- R |
|
| 1 | cA | |- A |
|
| 2 | 1 0 | wpart | |- R Part A |
| 3 | 0 | wdisjALTV | |- Disj R |
| 4 | 1 0 | wdmqs | |- R DomainQs A |
| 5 | 3 4 | wa | |- ( Disj R /\ R DomainQs A ) |
| 6 | 2 5 | wb | |- ( R Part A <-> ( Disj R /\ R DomainQs A ) ) |