| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cpautN |
|- PAut |
| 1 |
|
vk |
|- k |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vf |
|- f |
| 4 |
3
|
cv |
|- f |
| 5 |
|
cpsubsp |
|- PSubSp |
| 6 |
1
|
cv |
|- k |
| 7 |
6 5
|
cfv |
|- ( PSubSp ` k ) |
| 8 |
7 7 4
|
wf1o |
|- f : ( PSubSp ` k ) -1-1-onto-> ( PSubSp ` k ) |
| 9 |
|
vx |
|- x |
| 10 |
|
vy |
|- y |
| 11 |
9
|
cv |
|- x |
| 12 |
10
|
cv |
|- y |
| 13 |
11 12
|
wss |
|- x C_ y |
| 14 |
11 4
|
cfv |
|- ( f ` x ) |
| 15 |
12 4
|
cfv |
|- ( f ` y ) |
| 16 |
14 15
|
wss |
|- ( f ` x ) C_ ( f ` y ) |
| 17 |
13 16
|
wb |
|- ( x C_ y <-> ( f ` x ) C_ ( f ` y ) ) |
| 18 |
17 10 7
|
wral |
|- A. y e. ( PSubSp ` k ) ( x C_ y <-> ( f ` x ) C_ ( f ` y ) ) |
| 19 |
18 9 7
|
wral |
|- A. x e. ( PSubSp ` k ) A. y e. ( PSubSp ` k ) ( x C_ y <-> ( f ` x ) C_ ( f ` y ) ) |
| 20 |
8 19
|
wa |
|- ( f : ( PSubSp ` k ) -1-1-onto-> ( PSubSp ` k ) /\ A. x e. ( PSubSp ` k ) A. y e. ( PSubSp ` k ) ( x C_ y <-> ( f ` x ) C_ ( f ` y ) ) ) |
| 21 |
20 3
|
cab |
|- { f | ( f : ( PSubSp ` k ) -1-1-onto-> ( PSubSp ` k ) /\ A. x e. ( PSubSp ` k ) A. y e. ( PSubSp ` k ) ( x C_ y <-> ( f ` x ) C_ ( f ` y ) ) ) } |
| 22 |
1 2 21
|
cmpt |
|- ( k e. _V |-> { f | ( f : ( PSubSp ` k ) -1-1-onto-> ( PSubSp ` k ) /\ A. x e. ( PSubSp ` k ) A. y e. ( PSubSp ` k ) ( x C_ y <-> ( f ` x ) C_ ( f ` y ) ) ) } ) |
| 23 |
0 22
|
wceq |
|- PAut = ( k e. _V |-> { f | ( f : ( PSubSp ` k ) -1-1-onto-> ( PSubSp ` k ) /\ A. x e. ( PSubSp ` k ) A. y e. ( PSubSp ` k ) ( x C_ y <-> ( f ` x ) C_ ( f ` y ) ) ) } ) |