Step |
Hyp |
Ref |
Expression |
0 |
|
cpc |
|- pCnt |
1 |
|
vp |
|- p |
2 |
|
cprime |
|- Prime |
3 |
|
vr |
|- r |
4 |
|
cq |
|- QQ |
5 |
3
|
cv |
|- r |
6 |
|
cc0 |
|- 0 |
7 |
5 6
|
wceq |
|- r = 0 |
8 |
|
cpnf |
|- +oo |
9 |
|
vz |
|- z |
10 |
|
vx |
|- x |
11 |
|
cz |
|- ZZ |
12 |
|
vy |
|- y |
13 |
|
cn |
|- NN |
14 |
10
|
cv |
|- x |
15 |
|
cdiv |
|- / |
16 |
12
|
cv |
|- y |
17 |
14 16 15
|
co |
|- ( x / y ) |
18 |
5 17
|
wceq |
|- r = ( x / y ) |
19 |
9
|
cv |
|- z |
20 |
|
vn |
|- n |
21 |
|
cn0 |
|- NN0 |
22 |
1
|
cv |
|- p |
23 |
|
cexp |
|- ^ |
24 |
20
|
cv |
|- n |
25 |
22 24 23
|
co |
|- ( p ^ n ) |
26 |
|
cdvds |
|- || |
27 |
25 14 26
|
wbr |
|- ( p ^ n ) || x |
28 |
27 20 21
|
crab |
|- { n e. NN0 | ( p ^ n ) || x } |
29 |
|
cr |
|- RR |
30 |
|
clt |
|- < |
31 |
28 29 30
|
csup |
|- sup ( { n e. NN0 | ( p ^ n ) || x } , RR , < ) |
32 |
|
cmin |
|- - |
33 |
25 16 26
|
wbr |
|- ( p ^ n ) || y |
34 |
33 20 21
|
crab |
|- { n e. NN0 | ( p ^ n ) || y } |
35 |
34 29 30
|
csup |
|- sup ( { n e. NN0 | ( p ^ n ) || y } , RR , < ) |
36 |
31 35 32
|
co |
|- ( sup ( { n e. NN0 | ( p ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( p ^ n ) || y } , RR , < ) ) |
37 |
19 36
|
wceq |
|- z = ( sup ( { n e. NN0 | ( p ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( p ^ n ) || y } , RR , < ) ) |
38 |
18 37
|
wa |
|- ( r = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( p ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( p ^ n ) || y } , RR , < ) ) ) |
39 |
38 12 13
|
wrex |
|- E. y e. NN ( r = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( p ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( p ^ n ) || y } , RR , < ) ) ) |
40 |
39 10 11
|
wrex |
|- E. x e. ZZ E. y e. NN ( r = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( p ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( p ^ n ) || y } , RR , < ) ) ) |
41 |
40 9
|
cio |
|- ( iota z E. x e. ZZ E. y e. NN ( r = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( p ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( p ^ n ) || y } , RR , < ) ) ) ) |
42 |
7 8 41
|
cif |
|- if ( r = 0 , +oo , ( iota z E. x e. ZZ E. y e. NN ( r = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( p ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( p ^ n ) || y } , RR , < ) ) ) ) ) |
43 |
1 3 2 4 42
|
cmpo |
|- ( p e. Prime , r e. QQ |-> if ( r = 0 , +oo , ( iota z E. x e. ZZ E. y e. NN ( r = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( p ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( p ^ n ) || y } , RR , < ) ) ) ) ) ) |
44 |
0 43
|
wceq |
|- pCnt = ( p e. Prime , r e. QQ |-> if ( r = 0 , +oo , ( iota z E. x e. ZZ E. y e. NN ( r = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( p ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( p ^ n ) || y } , RR , < ) ) ) ) ) ) |