| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cpell14qr |
|- Pell14QR |
| 1 |
|
vx |
|- x |
| 2 |
|
cn |
|- NN |
| 3 |
|
csquarenn |
|- []NN |
| 4 |
2 3
|
cdif |
|- ( NN \ []NN ) |
| 5 |
|
vy |
|- y |
| 6 |
|
cr |
|- RR |
| 7 |
|
vz |
|- z |
| 8 |
|
cn0 |
|- NN0 |
| 9 |
|
vw |
|- w |
| 10 |
|
cz |
|- ZZ |
| 11 |
5
|
cv |
|- y |
| 12 |
7
|
cv |
|- z |
| 13 |
|
caddc |
|- + |
| 14 |
|
csqrt |
|- sqrt |
| 15 |
1
|
cv |
|- x |
| 16 |
15 14
|
cfv |
|- ( sqrt ` x ) |
| 17 |
|
cmul |
|- x. |
| 18 |
9
|
cv |
|- w |
| 19 |
16 18 17
|
co |
|- ( ( sqrt ` x ) x. w ) |
| 20 |
12 19 13
|
co |
|- ( z + ( ( sqrt ` x ) x. w ) ) |
| 21 |
11 20
|
wceq |
|- y = ( z + ( ( sqrt ` x ) x. w ) ) |
| 22 |
|
cexp |
|- ^ |
| 23 |
|
c2 |
|- 2 |
| 24 |
12 23 22
|
co |
|- ( z ^ 2 ) |
| 25 |
|
cmin |
|- - |
| 26 |
18 23 22
|
co |
|- ( w ^ 2 ) |
| 27 |
15 26 17
|
co |
|- ( x x. ( w ^ 2 ) ) |
| 28 |
24 27 25
|
co |
|- ( ( z ^ 2 ) - ( x x. ( w ^ 2 ) ) ) |
| 29 |
|
c1 |
|- 1 |
| 30 |
28 29
|
wceq |
|- ( ( z ^ 2 ) - ( x x. ( w ^ 2 ) ) ) = 1 |
| 31 |
21 30
|
wa |
|- ( y = ( z + ( ( sqrt ` x ) x. w ) ) /\ ( ( z ^ 2 ) - ( x x. ( w ^ 2 ) ) ) = 1 ) |
| 32 |
31 9 10
|
wrex |
|- E. w e. ZZ ( y = ( z + ( ( sqrt ` x ) x. w ) ) /\ ( ( z ^ 2 ) - ( x x. ( w ^ 2 ) ) ) = 1 ) |
| 33 |
32 7 8
|
wrex |
|- E. z e. NN0 E. w e. ZZ ( y = ( z + ( ( sqrt ` x ) x. w ) ) /\ ( ( z ^ 2 ) - ( x x. ( w ^ 2 ) ) ) = 1 ) |
| 34 |
33 5 6
|
crab |
|- { y e. RR | E. z e. NN0 E. w e. ZZ ( y = ( z + ( ( sqrt ` x ) x. w ) ) /\ ( ( z ^ 2 ) - ( x x. ( w ^ 2 ) ) ) = 1 ) } |
| 35 |
1 4 34
|
cmpt |
|- ( x e. ( NN \ []NN ) |-> { y e. RR | E. z e. NN0 E. w e. ZZ ( y = ( z + ( ( sqrt ` x ) x. w ) ) /\ ( ( z ^ 2 ) - ( x x. ( w ^ 2 ) ) ) = 1 ) } ) |
| 36 |
0 35
|
wceq |
|- Pell14QR = ( x e. ( NN \ []NN ) |-> { y e. RR | E. z e. NN0 E. w e. ZZ ( y = ( z + ( ( sqrt ` x ) x. w ) ) /\ ( ( z ^ 2 ) - ( x x. ( w ^ 2 ) ) ) = 1 ) } ) |