Description: Define the class of all perfect spaces. A perfect space is one for which every point in the set is a limit point of the whole space. (Contributed by Mario Carneiro, 24-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-perf | |- Perf = { j e. Top | ( ( limPt ` j ) ` U. j ) = U. j } | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 0 | cperf | |- Perf | |
| 1 | vj | |- j | |
| 2 | ctop | |- Top | |
| 3 | clp | |- limPt | |
| 4 | 1 | cv | |- j | 
| 5 | 4 3 | cfv | |- ( limPt ` j ) | 
| 6 | 4 | cuni | |- U. j | 
| 7 | 6 5 | cfv | |- ( ( limPt ` j ) ` U. j ) | 
| 8 | 7 6 | wceq | |- ( ( limPt ` j ) ` U. j ) = U. j | 
| 9 | 8 1 2 | crab |  |-  { j e. Top | ( ( limPt ` j ) ` U. j ) = U. j } | 
| 10 | 0 9 | wceq |  |-  Perf = { j e. Top | ( ( limPt ` j ) ` U. j ) = U. j } |