Step |
Hyp |
Ref |
Expression |
0 |
|
cperpg |
|- perpG |
1 |
|
vg |
|- g |
2 |
|
cvv |
|- _V |
3 |
|
va |
|- a |
4 |
|
vb |
|- b |
5 |
3
|
cv |
|- a |
6 |
|
clng |
|- LineG |
7 |
1
|
cv |
|- g |
8 |
7 6
|
cfv |
|- ( LineG ` g ) |
9 |
8
|
crn |
|- ran ( LineG ` g ) |
10 |
5 9
|
wcel |
|- a e. ran ( LineG ` g ) |
11 |
4
|
cv |
|- b |
12 |
11 9
|
wcel |
|- b e. ran ( LineG ` g ) |
13 |
10 12
|
wa |
|- ( a e. ran ( LineG ` g ) /\ b e. ran ( LineG ` g ) ) |
14 |
|
vx |
|- x |
15 |
5 11
|
cin |
|- ( a i^i b ) |
16 |
|
vu |
|- u |
17 |
|
vv |
|- v |
18 |
16
|
cv |
|- u |
19 |
14
|
cv |
|- x |
20 |
17
|
cv |
|- v |
21 |
18 19 20
|
cs3 |
|- <" u x v "> |
22 |
|
crag |
|- raG |
23 |
7 22
|
cfv |
|- ( raG ` g ) |
24 |
21 23
|
wcel |
|- <" u x v "> e. ( raG ` g ) |
25 |
24 17 11
|
wral |
|- A. v e. b <" u x v "> e. ( raG ` g ) |
26 |
25 16 5
|
wral |
|- A. u e. a A. v e. b <" u x v "> e. ( raG ` g ) |
27 |
26 14 15
|
wrex |
|- E. x e. ( a i^i b ) A. u e. a A. v e. b <" u x v "> e. ( raG ` g ) |
28 |
13 27
|
wa |
|- ( ( a e. ran ( LineG ` g ) /\ b e. ran ( LineG ` g ) ) /\ E. x e. ( a i^i b ) A. u e. a A. v e. b <" u x v "> e. ( raG ` g ) ) |
29 |
28 3 4
|
copab |
|- { <. a , b >. | ( ( a e. ran ( LineG ` g ) /\ b e. ran ( LineG ` g ) ) /\ E. x e. ( a i^i b ) A. u e. a A. v e. b <" u x v "> e. ( raG ` g ) ) } |
30 |
1 2 29
|
cmpt |
|- ( g e. _V |-> { <. a , b >. | ( ( a e. ran ( LineG ` g ) /\ b e. ran ( LineG ` g ) ) /\ E. x e. ( a i^i b ) A. u e. a A. v e. b <" u x v "> e. ( raG ` g ) ) } ) |
31 |
0 30
|
wceq |
|- perpG = ( g e. _V |-> { <. a , b >. | ( ( a e. ran ( LineG ` g ) /\ b e. ran ( LineG ` g ) ) /\ E. x e. ( a i^i b ) A. u e. a A. v e. b <" u x v "> e. ( raG ` g ) ) } ) |