Metamath Proof Explorer


Definition df-pfx

Description: Define an operation which extracts prefixes of words, i.e. subwords (or substrings) starting at the beginning of a word (or string). In other words, ( S prefix L ) is the prefix of the word S of length L . Definition in Section 9.1 of AhoHopUll p. 318. See also Wikipedia "Substring" https://en.wikipedia.org/wiki/Substring#Prefix . (Contributed by AV, 2-May-2020)

Ref Expression
Assertion df-pfx
|- prefix = ( s e. _V , l e. NN0 |-> ( s substr <. 0 , l >. ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cpfx
 |-  prefix
1 vs
 |-  s
2 cvv
 |-  _V
3 vl
 |-  l
4 cn0
 |-  NN0
5 1 cv
 |-  s
6 csubstr
 |-  substr
7 cc0
 |-  0
8 3 cv
 |-  l
9 7 8 cop
 |-  <. 0 , l >.
10 5 9 6 co
 |-  ( s substr <. 0 , l >. )
11 1 3 2 4 10 cmpo
 |-  ( s e. _V , l e. NN0 |-> ( s substr <. 0 , l >. ) )
12 0 11 wceq
 |-  prefix = ( s e. _V , l e. NN0 |-> ( s substr <. 0 , l >. ) )