| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cpgp |
|- pGrp |
| 1 |
|
vp |
|- p |
| 2 |
|
vg |
|- g |
| 3 |
1
|
cv |
|- p |
| 4 |
|
cprime |
|- Prime |
| 5 |
3 4
|
wcel |
|- p e. Prime |
| 6 |
2
|
cv |
|- g |
| 7 |
|
cgrp |
|- Grp |
| 8 |
6 7
|
wcel |
|- g e. Grp |
| 9 |
5 8
|
wa |
|- ( p e. Prime /\ g e. Grp ) |
| 10 |
|
vx |
|- x |
| 11 |
|
cbs |
|- Base |
| 12 |
6 11
|
cfv |
|- ( Base ` g ) |
| 13 |
|
vn |
|- n |
| 14 |
|
cn0 |
|- NN0 |
| 15 |
|
cod |
|- od |
| 16 |
6 15
|
cfv |
|- ( od ` g ) |
| 17 |
10
|
cv |
|- x |
| 18 |
17 16
|
cfv |
|- ( ( od ` g ) ` x ) |
| 19 |
|
cexp |
|- ^ |
| 20 |
13
|
cv |
|- n |
| 21 |
3 20 19
|
co |
|- ( p ^ n ) |
| 22 |
18 21
|
wceq |
|- ( ( od ` g ) ` x ) = ( p ^ n ) |
| 23 |
22 13 14
|
wrex |
|- E. n e. NN0 ( ( od ` g ) ` x ) = ( p ^ n ) |
| 24 |
23 10 12
|
wral |
|- A. x e. ( Base ` g ) E. n e. NN0 ( ( od ` g ) ` x ) = ( p ^ n ) |
| 25 |
9 24
|
wa |
|- ( ( p e. Prime /\ g e. Grp ) /\ A. x e. ( Base ` g ) E. n e. NN0 ( ( od ` g ) ` x ) = ( p ^ n ) ) |
| 26 |
25 1 2
|
copab |
|- { <. p , g >. | ( ( p e. Prime /\ g e. Grp ) /\ A. x e. ( Base ` g ) E. n e. NN0 ( ( od ` g ) ` x ) = ( p ^ n ) ) } |
| 27 |
0 26
|
wceq |
|- pGrp = { <. p , g >. | ( ( p e. Prime /\ g e. Grp ) /\ A. x e. ( Base ` g ) E. n e. NN0 ( ( od ` g ) ` x ) = ( p ^ n ) ) } |