| Step | Hyp | Ref | Expression | 
						
							| 0 |  | ccphlo |  |-  CPreHilOLD | 
						
							| 1 |  | cnv |  |-  NrmCVec | 
						
							| 2 |  | vg |  |-  g | 
						
							| 3 |  | vs |  |-  s | 
						
							| 4 |  | vn |  |-  n | 
						
							| 5 |  | vx |  |-  x | 
						
							| 6 | 2 | cv |  |-  g | 
						
							| 7 | 6 | crn |  |-  ran g | 
						
							| 8 |  | vy |  |-  y | 
						
							| 9 | 4 | cv |  |-  n | 
						
							| 10 | 5 | cv |  |-  x | 
						
							| 11 | 8 | cv |  |-  y | 
						
							| 12 | 10 11 6 | co |  |-  ( x g y ) | 
						
							| 13 | 12 9 | cfv |  |-  ( n ` ( x g y ) ) | 
						
							| 14 |  | cexp |  |-  ^ | 
						
							| 15 |  | c2 |  |-  2 | 
						
							| 16 | 13 15 14 | co |  |-  ( ( n ` ( x g y ) ) ^ 2 ) | 
						
							| 17 |  | caddc |  |-  + | 
						
							| 18 |  | c1 |  |-  1 | 
						
							| 19 | 18 | cneg |  |-  -u 1 | 
						
							| 20 | 3 | cv |  |-  s | 
						
							| 21 | 19 11 20 | co |  |-  ( -u 1 s y ) | 
						
							| 22 | 10 21 6 | co |  |-  ( x g ( -u 1 s y ) ) | 
						
							| 23 | 22 9 | cfv |  |-  ( n ` ( x g ( -u 1 s y ) ) ) | 
						
							| 24 | 23 15 14 | co |  |-  ( ( n ` ( x g ( -u 1 s y ) ) ) ^ 2 ) | 
						
							| 25 | 16 24 17 | co |  |-  ( ( ( n ` ( x g y ) ) ^ 2 ) + ( ( n ` ( x g ( -u 1 s y ) ) ) ^ 2 ) ) | 
						
							| 26 |  | cmul |  |-  x. | 
						
							| 27 | 10 9 | cfv |  |-  ( n ` x ) | 
						
							| 28 | 27 15 14 | co |  |-  ( ( n ` x ) ^ 2 ) | 
						
							| 29 | 11 9 | cfv |  |-  ( n ` y ) | 
						
							| 30 | 29 15 14 | co |  |-  ( ( n ` y ) ^ 2 ) | 
						
							| 31 | 28 30 17 | co |  |-  ( ( ( n ` x ) ^ 2 ) + ( ( n ` y ) ^ 2 ) ) | 
						
							| 32 | 15 31 26 | co |  |-  ( 2 x. ( ( ( n ` x ) ^ 2 ) + ( ( n ` y ) ^ 2 ) ) ) | 
						
							| 33 | 25 32 | wceq |  |-  ( ( ( n ` ( x g y ) ) ^ 2 ) + ( ( n ` ( x g ( -u 1 s y ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( n ` x ) ^ 2 ) + ( ( n ` y ) ^ 2 ) ) ) | 
						
							| 34 | 33 8 7 | wral |  |-  A. y e. ran g ( ( ( n ` ( x g y ) ) ^ 2 ) + ( ( n ` ( x g ( -u 1 s y ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( n ` x ) ^ 2 ) + ( ( n ` y ) ^ 2 ) ) ) | 
						
							| 35 | 34 5 7 | wral |  |-  A. x e. ran g A. y e. ran g ( ( ( n ` ( x g y ) ) ^ 2 ) + ( ( n ` ( x g ( -u 1 s y ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( n ` x ) ^ 2 ) + ( ( n ` y ) ^ 2 ) ) ) | 
						
							| 36 | 35 2 3 4 | coprab |  |-  { <. <. g , s >. , n >. | A. x e. ran g A. y e. ran g ( ( ( n ` ( x g y ) ) ^ 2 ) + ( ( n ` ( x g ( -u 1 s y ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( n ` x ) ^ 2 ) + ( ( n ` y ) ^ 2 ) ) ) } | 
						
							| 37 | 1 36 | cin |  |-  ( NrmCVec i^i { <. <. g , s >. , n >. | A. x e. ran g A. y e. ran g ( ( ( n ` ( x g y ) ) ^ 2 ) + ( ( n ` ( x g ( -u 1 s y ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( n ` x ) ^ 2 ) + ( ( n ` y ) ^ 2 ) ) ) } ) | 
						
							| 38 | 0 37 | wceq |  |-  CPreHilOLD = ( NrmCVec i^i { <. <. g , s >. , n >. | A. x e. ran g A. y e. ran g ( ( ( n ` ( x g y ) ) ^ 2 ) + ( ( n ` ( x g ( -u 1 s y ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( n ` x ) ^ 2 ) + ( ( n ` y ) ^ 2 ) ) ) } ) |