Database
ELEMENTARY NUMBER THEORY
Elementary prime number theory
Euler's theorem
df-phi
Metamath Proof Explorer
Description: Define the Euler phi function (also called "Euler totient function"),
which counts the number of integers less than n and coprime to it,
see definition in ApostolNT p. 25. (Contributed by Mario Carneiro , 23-Feb-2014)
Ref
Expression
Assertion
df-phi
|- phi = ( n e. NN |-> ( # ` { x e. ( 1 ... n ) | ( x gcd n ) = 1 } ) )
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cphi
|- phi
1
vn
|- n
2
cn
|- NN
3
chash
|- #
4
vx
|- x
5
c1
|- 1
6
cfz
|- ...
7
1
cv
|- n
8
5 7 6
co
|- ( 1 ... n )
9
4
cv
|- x
10
cgcd
|- gcd
11
9 7 10
co
|- ( x gcd n )
12
11 5
wceq
|- ( x gcd n ) = 1
13
12 4 8
crab
|- { x e. ( 1 ... n ) | ( x gcd n ) = 1 }
14
13 3
cfv
|- ( # ` { x e. ( 1 ... n ) | ( x gcd n ) = 1 } )
15
1 2 14
cmpt
|- ( n e. NN |-> ( # ` { x e. ( 1 ... n ) | ( x gcd n ) = 1 } ) )
16
0 15
wceq
|- phi = ( n e. NN |-> ( # ` { x e. ( 1 ... n ) | ( x gcd n ) = 1 } ) )