Metamath Proof Explorer


Definition df-pi

Description: Define the constant pi, _pi = 3.14159..., which is the smallest positive number whose sine is zero. Definition of _pi in Gleason p. 311. (Contributed by Paul Chapman, 23-Jan-2008) (Revised by AV, 14-Sep-2020)

Ref Expression
Assertion df-pi
|- _pi = inf ( ( RR+ i^i ( `' sin " { 0 } ) ) , RR , < )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cpi
 |-  _pi
1 crp
 |-  RR+
2 csin
 |-  sin
3 2 ccnv
 |-  `' sin
4 cc0
 |-  0
5 4 csn
 |-  { 0 }
6 3 5 cima
 |-  ( `' sin " { 0 } )
7 1 6 cin
 |-  ( RR+ i^i ( `' sin " { 0 } ) )
8 cr
 |-  RR
9 clt
 |-  <
10 7 8 9 cinf
 |-  inf ( ( RR+ i^i ( `' sin " { 0 } ) ) , RR , < )
11 0 10 wceq
 |-  _pi = inf ( ( RR+ i^i ( `' sin " { 0 } ) ) , RR , < )