| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cpj1 |  |-  proj1 | 
						
							| 1 |  | vw |  |-  w | 
						
							| 2 |  | cvv |  |-  _V | 
						
							| 3 |  | vt |  |-  t | 
						
							| 4 |  | cbs |  |-  Base | 
						
							| 5 | 1 | cv |  |-  w | 
						
							| 6 | 5 4 | cfv |  |-  ( Base ` w ) | 
						
							| 7 | 6 | cpw |  |-  ~P ( Base ` w ) | 
						
							| 8 |  | vu |  |-  u | 
						
							| 9 |  | vz |  |-  z | 
						
							| 10 | 3 | cv |  |-  t | 
						
							| 11 |  | clsm |  |-  LSSum | 
						
							| 12 | 5 11 | cfv |  |-  ( LSSum ` w ) | 
						
							| 13 | 8 | cv |  |-  u | 
						
							| 14 | 10 13 12 | co |  |-  ( t ( LSSum ` w ) u ) | 
						
							| 15 |  | vx |  |-  x | 
						
							| 16 |  | vy |  |-  y | 
						
							| 17 | 9 | cv |  |-  z | 
						
							| 18 | 15 | cv |  |-  x | 
						
							| 19 |  | cplusg |  |-  +g | 
						
							| 20 | 5 19 | cfv |  |-  ( +g ` w ) | 
						
							| 21 | 16 | cv |  |-  y | 
						
							| 22 | 18 21 20 | co |  |-  ( x ( +g ` w ) y ) | 
						
							| 23 | 17 22 | wceq |  |-  z = ( x ( +g ` w ) y ) | 
						
							| 24 | 23 16 13 | wrex |  |-  E. y e. u z = ( x ( +g ` w ) y ) | 
						
							| 25 | 24 15 10 | crio |  |-  ( iota_ x e. t E. y e. u z = ( x ( +g ` w ) y ) ) | 
						
							| 26 | 9 14 25 | cmpt |  |-  ( z e. ( t ( LSSum ` w ) u ) |-> ( iota_ x e. t E. y e. u z = ( x ( +g ` w ) y ) ) ) | 
						
							| 27 | 3 8 7 7 26 | cmpo |  |-  ( t e. ~P ( Base ` w ) , u e. ~P ( Base ` w ) |-> ( z e. ( t ( LSSum ` w ) u ) |-> ( iota_ x e. t E. y e. u z = ( x ( +g ` w ) y ) ) ) ) | 
						
							| 28 | 1 2 27 | cmpt |  |-  ( w e. _V |-> ( t e. ~P ( Base ` w ) , u e. ~P ( Base ` w ) |-> ( z e. ( t ( LSSum ` w ) u ) |-> ( iota_ x e. t E. y e. u z = ( x ( +g ` w ) y ) ) ) ) ) | 
						
							| 29 | 0 28 | wceq |  |-  proj1 = ( w e. _V |-> ( t e. ~P ( Base ` w ) , u e. ~P ( Base ` w ) |-> ( z e. ( t ( LSSum ` w ) u ) |-> ( iota_ x e. t E. y e. u z = ( x ( +g ` w ) y ) ) ) ) ) |