Metamath Proof Explorer


Definition df-plt

Description: Define less-than ordering for posets and related structures. Unlike df-base and df-ple , this is a derived component extractor and not an extensible structure component extractor that defines the poset. (Contributed by NM, 12-Oct-2011) (Revised by Mario Carneiro, 8-Feb-2015)

Ref Expression
Assertion df-plt
|- lt = ( p e. _V |-> ( ( le ` p ) \ _I ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cplt
 |-  lt
1 vp
 |-  p
2 cvv
 |-  _V
3 cple
 |-  le
4 1 cv
 |-  p
5 4 3 cfv
 |-  ( le ` p )
6 cid
 |-  _I
7 5 6 cdif
 |-  ( ( le ` p ) \ _I )
8 1 2 7 cmpt
 |-  ( p e. _V |-> ( ( le ` p ) \ _I ) )
9 0 8 wceq
 |-  lt = ( p e. _V |-> ( ( le ` p ) \ _I ) )