Metamath Proof Explorer


Definition df-ply1

Description: Define the algebra of univariate polynomials. (Contributed by Mario Carneiro, 9-Feb-2015)

Ref Expression
Assertion df-ply1
|- Poly1 = ( r e. _V |-> ( ( PwSer1 ` r ) |`s ( Base ` ( 1o mPoly r ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cpl1
 |-  Poly1
1 vr
 |-  r
2 cvv
 |-  _V
3 cps1
 |-  PwSer1
4 1 cv
 |-  r
5 4 3 cfv
 |-  ( PwSer1 ` r )
6 cress
 |-  |`s
7 cbs
 |-  Base
8 c1o
 |-  1o
9 cmpl
 |-  mPoly
10 8 4 9 co
 |-  ( 1o mPoly r )
11 10 7 cfv
 |-  ( Base ` ( 1o mPoly r ) )
12 5 11 6 co
 |-  ( ( PwSer1 ` r ) |`s ( Base ` ( 1o mPoly r ) ) )
13 1 2 12 cmpt
 |-  ( r e. _V |-> ( ( PwSer1 ` r ) |`s ( Base ` ( 1o mPoly r ) ) ) )
14 0 13 wceq
 |-  Poly1 = ( r e. _V |-> ( ( PwSer1 ` r ) |`s ( Base ` ( 1o mPoly r ) ) ) )