Description: Define the algebra of univariate polynomials. (Contributed by Mario Carneiro, 9-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | df-ply1 | |- Poly1 = ( r e. _V |-> ( ( PwSer1 ` r ) |`s ( Base ` ( 1o mPoly r ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cpl1 | |- Poly1 |
|
1 | vr | |- r |
|
2 | cvv | |- _V |
|
3 | cps1 | |- PwSer1 |
|
4 | 1 | cv | |- r |
5 | 4 3 | cfv | |- ( PwSer1 ` r ) |
6 | cress | |- |`s |
|
7 | cbs | |- Base |
|
8 | c1o | |- 1o |
|
9 | cmpl | |- mPoly |
|
10 | 8 4 9 | co | |- ( 1o mPoly r ) |
11 | 10 7 | cfv | |- ( Base ` ( 1o mPoly r ) ) |
12 | 5 11 6 | co | |- ( ( PwSer1 ` r ) |`s ( Base ` ( 1o mPoly r ) ) ) |
13 | 1 2 12 | cmpt | |- ( r e. _V |-> ( ( PwSer1 ` r ) |`s ( Base ` ( 1o mPoly r ) ) ) ) |
14 | 0 13 | wceq | |- Poly1 = ( r e. _V |-> ( ( PwSer1 ` r ) |`s ( Base ` ( 1o mPoly r ) ) ) ) |