Step |
Hyp |
Ref |
Expression |
0 |
|
cpm2mp |
|- pMatToMatPoly |
1 |
|
vn |
|- n |
2 |
|
cfn |
|- Fin |
3 |
|
vr |
|- r |
4 |
|
cvv |
|- _V |
5 |
|
vm |
|- m |
6 |
|
cbs |
|- Base |
7 |
1
|
cv |
|- n |
8 |
|
cmat |
|- Mat |
9 |
|
cpl1 |
|- Poly1 |
10 |
3
|
cv |
|- r |
11 |
10 9
|
cfv |
|- ( Poly1 ` r ) |
12 |
7 11 8
|
co |
|- ( n Mat ( Poly1 ` r ) ) |
13 |
12 6
|
cfv |
|- ( Base ` ( n Mat ( Poly1 ` r ) ) ) |
14 |
7 10 8
|
co |
|- ( n Mat r ) |
15 |
|
va |
|- a |
16 |
15
|
cv |
|- a |
17 |
16 9
|
cfv |
|- ( Poly1 ` a ) |
18 |
|
vq |
|- q |
19 |
18
|
cv |
|- q |
20 |
|
cgsu |
|- gsum |
21 |
|
vk |
|- k |
22 |
|
cn0 |
|- NN0 |
23 |
5
|
cv |
|- m |
24 |
|
cdecpmat |
|- decompPMat |
25 |
21
|
cv |
|- k |
26 |
23 25 24
|
co |
|- ( m decompPMat k ) |
27 |
|
cvsca |
|- .s |
28 |
19 27
|
cfv |
|- ( .s ` q ) |
29 |
|
cmg |
|- .g |
30 |
|
cmgp |
|- mulGrp |
31 |
19 30
|
cfv |
|- ( mulGrp ` q ) |
32 |
31 29
|
cfv |
|- ( .g ` ( mulGrp ` q ) ) |
33 |
|
cv1 |
|- var1 |
34 |
16 33
|
cfv |
|- ( var1 ` a ) |
35 |
25 34 32
|
co |
|- ( k ( .g ` ( mulGrp ` q ) ) ( var1 ` a ) ) |
36 |
26 35 28
|
co |
|- ( ( m decompPMat k ) ( .s ` q ) ( k ( .g ` ( mulGrp ` q ) ) ( var1 ` a ) ) ) |
37 |
21 22 36
|
cmpt |
|- ( k e. NN0 |-> ( ( m decompPMat k ) ( .s ` q ) ( k ( .g ` ( mulGrp ` q ) ) ( var1 ` a ) ) ) ) |
38 |
19 37 20
|
co |
|- ( q gsum ( k e. NN0 |-> ( ( m decompPMat k ) ( .s ` q ) ( k ( .g ` ( mulGrp ` q ) ) ( var1 ` a ) ) ) ) ) |
39 |
18 17 38
|
csb |
|- [_ ( Poly1 ` a ) / q ]_ ( q gsum ( k e. NN0 |-> ( ( m decompPMat k ) ( .s ` q ) ( k ( .g ` ( mulGrp ` q ) ) ( var1 ` a ) ) ) ) ) |
40 |
15 14 39
|
csb |
|- [_ ( n Mat r ) / a ]_ [_ ( Poly1 ` a ) / q ]_ ( q gsum ( k e. NN0 |-> ( ( m decompPMat k ) ( .s ` q ) ( k ( .g ` ( mulGrp ` q ) ) ( var1 ` a ) ) ) ) ) |
41 |
5 13 40
|
cmpt |
|- ( m e. ( Base ` ( n Mat ( Poly1 ` r ) ) ) |-> [_ ( n Mat r ) / a ]_ [_ ( Poly1 ` a ) / q ]_ ( q gsum ( k e. NN0 |-> ( ( m decompPMat k ) ( .s ` q ) ( k ( .g ` ( mulGrp ` q ) ) ( var1 ` a ) ) ) ) ) ) |
42 |
1 3 2 4 41
|
cmpo |
|- ( n e. Fin , r e. _V |-> ( m e. ( Base ` ( n Mat ( Poly1 ` r ) ) ) |-> [_ ( n Mat r ) / a ]_ [_ ( Poly1 ` a ) / q ]_ ( q gsum ( k e. NN0 |-> ( ( m decompPMat k ) ( .s ` q ) ( k ( .g ` ( mulGrp ` q ) ) ( var1 ` a ) ) ) ) ) ) ) |
43 |
0 42
|
wceq |
|- pMatToMatPoly = ( n e. Fin , r e. _V |-> ( m e. ( Base ` ( n Mat ( Poly1 ` r ) ) ) |-> [_ ( n Mat r ) / a ]_ [_ ( Poly1 ` a ) / q ]_ ( q gsum ( k e. NN0 |-> ( ( m decompPMat k ) ( .s ` q ) ( k ( .g ` ( mulGrp ` q ) ) ( var1 ` a ) ) ) ) ) ) ) |