Description: Define projective map for k at a . Definition in Theorem 15.5 of MaedaMaeda p. 62. (Contributed by NM, 2-Oct-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | df-pmap | |- pmap = ( k e. _V |-> ( a e. ( Base ` k ) |-> { p e. ( Atoms ` k ) | p ( le ` k ) a } ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cpmap | |- pmap |
|
1 | vk | |- k |
|
2 | cvv | |- _V |
|
3 | va | |- a |
|
4 | cbs | |- Base |
|
5 | 1 | cv | |- k |
6 | 5 4 | cfv | |- ( Base ` k ) |
7 | vp | |- p |
|
8 | catm | |- Atoms |
|
9 | 5 8 | cfv | |- ( Atoms ` k ) |
10 | 7 | cv | |- p |
11 | cple | |- le |
|
12 | 5 11 | cfv | |- ( le ` k ) |
13 | 3 | cv | |- a |
14 | 10 13 12 | wbr | |- p ( le ` k ) a |
15 | 14 7 9 | crab | |- { p e. ( Atoms ` k ) | p ( le ` k ) a } |
16 | 3 6 15 | cmpt | |- ( a e. ( Base ` k ) |-> { p e. ( Atoms ` k ) | p ( le ` k ) a } ) |
17 | 1 2 16 | cmpt | |- ( k e. _V |-> ( a e. ( Base ` k ) |-> { p e. ( Atoms ` k ) | p ( le ` k ) a } ) ) |
18 | 0 17 | wceq | |- pmap = ( k e. _V |-> ( a e. ( Base ` k ) |-> { p e. ( Atoms ` k ) | p ( le ` k ) a } ) ) |