Metamath Proof Explorer


Definition df-pmap

Description: Define projective map for k at a . Definition in Theorem 15.5 of MaedaMaeda p. 62. (Contributed by NM, 2-Oct-2011)

Ref Expression
Assertion df-pmap
|- pmap = ( k e. _V |-> ( a e. ( Base ` k ) |-> { p e. ( Atoms ` k ) | p ( le ` k ) a } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cpmap
 |-  pmap
1 vk
 |-  k
2 cvv
 |-  _V
3 va
 |-  a
4 cbs
 |-  Base
5 1 cv
 |-  k
6 5 4 cfv
 |-  ( Base ` k )
7 vp
 |-  p
8 catm
 |-  Atoms
9 5 8 cfv
 |-  ( Atoms ` k )
10 7 cv
 |-  p
11 cple
 |-  le
12 5 11 cfv
 |-  ( le ` k )
13 3 cv
 |-  a
14 10 13 12 wbr
 |-  p ( le ` k ) a
15 14 7 9 crab
 |-  { p e. ( Atoms ` k ) | p ( le ` k ) a }
16 3 6 15 cmpt
 |-  ( a e. ( Base ` k ) |-> { p e. ( Atoms ` k ) | p ( le ` k ) a } )
17 1 2 16 cmpt
 |-  ( k e. _V |-> ( a e. ( Base ` k ) |-> { p e. ( Atoms ` k ) | p ( le ` k ) a } ) )
18 0 17 wceq
 |-  pmap = ( k e. _V |-> ( a e. ( Base ` k ) |-> { p e. ( Atoms ` k ) | p ( le ` k ) a } ) )