Description: Define projective map for k at a . Definition in Theorem 15.5 of MaedaMaeda p. 62. (Contributed by NM, 2-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-pmap | |- pmap = ( k e. _V |-> ( a e. ( Base ` k ) |-> { p e. ( Atoms ` k ) | p ( le ` k ) a } ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 0 | cpmap | |- pmap | |
| 1 | vk | |- k | |
| 2 | cvv | |- _V | |
| 3 | va | |- a | |
| 4 | cbs | |- Base | |
| 5 | 1 | cv | |- k | 
| 6 | 5 4 | cfv | |- ( Base ` k ) | 
| 7 | vp | |- p | |
| 8 | catm | |- Atoms | |
| 9 | 5 8 | cfv | |- ( Atoms ` k ) | 
| 10 | 7 | cv | |- p | 
| 11 | cple | |- le | |
| 12 | 5 11 | cfv | |- ( le ` k ) | 
| 13 | 3 | cv | |- a | 
| 14 | 10 13 12 | wbr | |- p ( le ` k ) a | 
| 15 | 14 7 9 | crab |  |-  { p e. ( Atoms ` k ) | p ( le ` k ) a } | 
| 16 | 3 6 15 | cmpt |  |-  ( a e. ( Base ` k ) |-> { p e. ( Atoms ` k ) | p ( le ` k ) a } ) | 
| 17 | 1 2 16 | cmpt |  |-  ( k e. _V |-> ( a e. ( Base ` k ) |-> { p e. ( Atoms ` k ) | p ( le ` k ) a } ) ) | 
| 18 | 0 17 | wceq |  |-  pmap = ( k e. _V |-> ( a e. ( Base ` k ) |-> { p e. ( Atoms ` k ) | p ( le ` k ) a } ) ) |