Metamath Proof Explorer


Definition df-pmtr

Description: Define a function that generates the transpositions on a set. (Contributed by Stefan O'Rear, 16-Aug-2015)

Ref Expression
Assertion df-pmtr
|- pmTrsp = ( d e. _V |-> ( p e. { y e. ~P d | y ~~ 2o } |-> ( z e. d |-> if ( z e. p , U. ( p \ { z } ) , z ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cpmtr
 |-  pmTrsp
1 vd
 |-  d
2 cvv
 |-  _V
3 vp
 |-  p
4 vy
 |-  y
5 1 cv
 |-  d
6 5 cpw
 |-  ~P d
7 4 cv
 |-  y
8 cen
 |-  ~~
9 c2o
 |-  2o
10 7 9 8 wbr
 |-  y ~~ 2o
11 10 4 6 crab
 |-  { y e. ~P d | y ~~ 2o }
12 vz
 |-  z
13 12 cv
 |-  z
14 3 cv
 |-  p
15 13 14 wcel
 |-  z e. p
16 13 csn
 |-  { z }
17 14 16 cdif
 |-  ( p \ { z } )
18 17 cuni
 |-  U. ( p \ { z } )
19 15 18 13 cif
 |-  if ( z e. p , U. ( p \ { z } ) , z )
20 12 5 19 cmpt
 |-  ( z e. d |-> if ( z e. p , U. ( p \ { z } ) , z ) )
21 3 11 20 cmpt
 |-  ( p e. { y e. ~P d | y ~~ 2o } |-> ( z e. d |-> if ( z e. p , U. ( p \ { z } ) , z ) ) )
22 1 2 21 cmpt
 |-  ( d e. _V |-> ( p e. { y e. ~P d | y ~~ 2o } |-> ( z e. d |-> if ( z e. p , U. ( p \ { z } ) , z ) ) ) )
23 0 22 wceq
 |-  pmTrsp = ( d e. _V |-> ( p e. { y e. ~P d | y ~~ 2o } |-> ( z e. d |-> if ( z e. p , U. ( p \ { z } ) , z ) ) ) )