| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cpmtr |  |-  pmTrsp | 
						
							| 1 |  | vd |  |-  d | 
						
							| 2 |  | cvv |  |-  _V | 
						
							| 3 |  | vp |  |-  p | 
						
							| 4 |  | vy |  |-  y | 
						
							| 5 | 1 | cv |  |-  d | 
						
							| 6 | 5 | cpw |  |-  ~P d | 
						
							| 7 | 4 | cv |  |-  y | 
						
							| 8 |  | cen |  |-  ~~ | 
						
							| 9 |  | c2o |  |-  2o | 
						
							| 10 | 7 9 8 | wbr |  |-  y ~~ 2o | 
						
							| 11 | 10 4 6 | crab |  |-  { y e. ~P d | y ~~ 2o } | 
						
							| 12 |  | vz |  |-  z | 
						
							| 13 | 12 | cv |  |-  z | 
						
							| 14 | 3 | cv |  |-  p | 
						
							| 15 | 13 14 | wcel |  |-  z e. p | 
						
							| 16 | 13 | csn |  |-  { z } | 
						
							| 17 | 14 16 | cdif |  |-  ( p \ { z } ) | 
						
							| 18 | 17 | cuni |  |-  U. ( p \ { z } ) | 
						
							| 19 | 15 18 13 | cif |  |-  if ( z e. p , U. ( p \ { z } ) , z ) | 
						
							| 20 | 12 5 19 | cmpt |  |-  ( z e. d |-> if ( z e. p , U. ( p \ { z } ) , z ) ) | 
						
							| 21 | 3 11 20 | cmpt |  |-  ( p e. { y e. ~P d | y ~~ 2o } |-> ( z e. d |-> if ( z e. p , U. ( p \ { z } ) , z ) ) ) | 
						
							| 22 | 1 2 21 | cmpt |  |-  ( d e. _V |-> ( p e. { y e. ~P d | y ~~ 2o } |-> ( z e. d |-> if ( z e. p , U. ( p \ { z } ) , z ) ) ) ) | 
						
							| 23 | 0 22 | wceq |  |-  pmTrsp = ( d e. _V |-> ( p e. { y e. ~P d | y ~~ 2o } |-> ( z e. d |-> if ( z e. p , U. ( p \ { z } ) , z ) ) ) ) |