Step |
Hyp |
Ref |
Expression |
0 |
|
cpmtr |
|- pmTrsp |
1 |
|
vd |
|- d |
2 |
|
cvv |
|- _V |
3 |
|
vp |
|- p |
4 |
|
vy |
|- y |
5 |
1
|
cv |
|- d |
6 |
5
|
cpw |
|- ~P d |
7 |
4
|
cv |
|- y |
8 |
|
cen |
|- ~~ |
9 |
|
c2o |
|- 2o |
10 |
7 9 8
|
wbr |
|- y ~~ 2o |
11 |
10 4 6
|
crab |
|- { y e. ~P d | y ~~ 2o } |
12 |
|
vz |
|- z |
13 |
12
|
cv |
|- z |
14 |
3
|
cv |
|- p |
15 |
13 14
|
wcel |
|- z e. p |
16 |
13
|
csn |
|- { z } |
17 |
14 16
|
cdif |
|- ( p \ { z } ) |
18 |
17
|
cuni |
|- U. ( p \ { z } ) |
19 |
15 18 13
|
cif |
|- if ( z e. p , U. ( p \ { z } ) , z ) |
20 |
12 5 19
|
cmpt |
|- ( z e. d |-> if ( z e. p , U. ( p \ { z } ) , z ) ) |
21 |
3 11 20
|
cmpt |
|- ( p e. { y e. ~P d | y ~~ 2o } |-> ( z e. d |-> if ( z e. p , U. ( p \ { z } ) , z ) ) ) |
22 |
1 2 21
|
cmpt |
|- ( d e. _V |-> ( p e. { y e. ~P d | y ~~ 2o } |-> ( z e. d |-> if ( z e. p , U. ( p \ { z } ) , z ) ) ) ) |
23 |
0 22
|
wceq |
|- pmTrsp = ( d e. _V |-> ( p e. { y e. ~P d | y ~~ 2o } |-> ( z e. d |-> if ( z e. p , U. ( p \ { z } ) , z ) ) ) ) |