Metamath Proof Explorer


Definition df-pnrm

Description: Define perfectly normal spaces. A space is perfectly normal if it is normal and every closed set is a G_δ set, meaning that it is a countable intersection of open sets. (Contributed by Mario Carneiro, 26-Aug-2015)

Ref Expression
Assertion df-pnrm
|- PNrm = { j e. Nrm | ( Clsd ` j ) C_ ran ( f e. ( j ^m NN ) |-> |^| ran f ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cpnrm
 |-  PNrm
1 vj
 |-  j
2 cnrm
 |-  Nrm
3 ccld
 |-  Clsd
4 1 cv
 |-  j
5 4 3 cfv
 |-  ( Clsd ` j )
6 vf
 |-  f
7 cmap
 |-  ^m
8 cn
 |-  NN
9 4 8 7 co
 |-  ( j ^m NN )
10 6 cv
 |-  f
11 10 crn
 |-  ran f
12 11 cint
 |-  |^| ran f
13 6 9 12 cmpt
 |-  ( f e. ( j ^m NN ) |-> |^| ran f )
14 13 crn
 |-  ran ( f e. ( j ^m NN ) |-> |^| ran f )
15 5 14 wss
 |-  ( Clsd ` j ) C_ ran ( f e. ( j ^m NN ) |-> |^| ran f )
16 15 1 2 crab
 |-  { j e. Nrm | ( Clsd ` j ) C_ ran ( f e. ( j ^m NN ) |-> |^| ran f ) }
17 0 16 wceq
 |-  PNrm = { j e. Nrm | ( Clsd ` j ) C_ ran ( f e. ( j ^m NN ) |-> |^| ran f ) }