Description: Define perfectly normal spaces. A space is perfectly normal if it is normal and every closed set is a G_δ set, meaning that it is a countable intersection of open sets. (Contributed by Mario Carneiro, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-pnrm | |- PNrm = { j e. Nrm | ( Clsd ` j ) C_ ran ( f e. ( j ^m NN ) |-> |^| ran f ) } | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 0 | cpnrm | |- PNrm | |
| 1 | vj | |- j | |
| 2 | cnrm | |- Nrm | |
| 3 | ccld | |- Clsd | |
| 4 | 1 | cv | |- j | 
| 5 | 4 3 | cfv | |- ( Clsd ` j ) | 
| 6 | vf | |- f | |
| 7 | cmap | |- ^m | |
| 8 | cn | |- NN | |
| 9 | 4 8 7 | co | |- ( j ^m NN ) | 
| 10 | 6 | cv | |- f | 
| 11 | 10 | crn | |- ran f | 
| 12 | 11 | cint | |- |^| ran f | 
| 13 | 6 9 12 | cmpt | |- ( f e. ( j ^m NN ) |-> |^| ran f ) | 
| 14 | 13 | crn | |- ran ( f e. ( j ^m NN ) |-> |^| ran f ) | 
| 15 | 5 14 | wss | |- ( Clsd ` j ) C_ ran ( f e. ( j ^m NN ) |-> |^| ran f ) | 
| 16 | 15 1 2 | crab |  |-  { j e. Nrm | ( Clsd ` j ) C_ ran ( f e. ( j ^m NN ) |-> |^| ran f ) } | 
| 17 | 0 16 | wceq |  |-  PNrm = { j e. Nrm | ( Clsd ` j ) C_ ran ( f e. ( j ^m NN ) |-> |^| ran f ) } |