| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cR |
|- R |
| 1 |
|
cA |
|- A |
| 2 |
1 0
|
wpo |
|- R Po A |
| 3 |
|
vx |
|- x |
| 4 |
|
vy |
|- y |
| 5 |
|
vz |
|- z |
| 6 |
3
|
cv |
|- x |
| 7 |
6 6 0
|
wbr |
|- x R x |
| 8 |
7
|
wn |
|- -. x R x |
| 9 |
4
|
cv |
|- y |
| 10 |
6 9 0
|
wbr |
|- x R y |
| 11 |
5
|
cv |
|- z |
| 12 |
9 11 0
|
wbr |
|- y R z |
| 13 |
10 12
|
wa |
|- ( x R y /\ y R z ) |
| 14 |
6 11 0
|
wbr |
|- x R z |
| 15 |
13 14
|
wi |
|- ( ( x R y /\ y R z ) -> x R z ) |
| 16 |
8 15
|
wa |
|- ( -. x R x /\ ( ( x R y /\ y R z ) -> x R z ) ) |
| 17 |
16 5 1
|
wral |
|- A. z e. A ( -. x R x /\ ( ( x R y /\ y R z ) -> x R z ) ) |
| 18 |
17 4 1
|
wral |
|- A. y e. A A. z e. A ( -. x R x /\ ( ( x R y /\ y R z ) -> x R z ) ) |
| 19 |
18 3 1
|
wral |
|- A. x e. A A. y e. A A. z e. A ( -. x R x /\ ( ( x R y /\ y R z ) -> x R z ) ) |
| 20 |
2 19
|
wb |
|- ( R Po A <-> A. x e. A A. y e. A A. z e. A ( -. x R x /\ ( ( x R y /\ y R z ) -> x R z ) ) ) |