Step |
Hyp |
Ref |
Expression |
0 |
|
cpolN |
|- _|_P |
1 |
|
vl |
|- l |
2 |
|
cvv |
|- _V |
3 |
|
vm |
|- m |
4 |
|
catm |
|- Atoms |
5 |
1
|
cv |
|- l |
6 |
5 4
|
cfv |
|- ( Atoms ` l ) |
7 |
6
|
cpw |
|- ~P ( Atoms ` l ) |
8 |
|
vp |
|- p |
9 |
3
|
cv |
|- m |
10 |
|
cpmap |
|- pmap |
11 |
5 10
|
cfv |
|- ( pmap ` l ) |
12 |
|
coc |
|- oc |
13 |
5 12
|
cfv |
|- ( oc ` l ) |
14 |
8
|
cv |
|- p |
15 |
14 13
|
cfv |
|- ( ( oc ` l ) ` p ) |
16 |
15 11
|
cfv |
|- ( ( pmap ` l ) ` ( ( oc ` l ) ` p ) ) |
17 |
8 9 16
|
ciin |
|- |^|_ p e. m ( ( pmap ` l ) ` ( ( oc ` l ) ` p ) ) |
18 |
6 17
|
cin |
|- ( ( Atoms ` l ) i^i |^|_ p e. m ( ( pmap ` l ) ` ( ( oc ` l ) ` p ) ) ) |
19 |
3 7 18
|
cmpt |
|- ( m e. ~P ( Atoms ` l ) |-> ( ( Atoms ` l ) i^i |^|_ p e. m ( ( pmap ` l ) ` ( ( oc ` l ) ` p ) ) ) ) |
20 |
1 2 19
|
cmpt |
|- ( l e. _V |-> ( m e. ~P ( Atoms ` l ) |-> ( ( Atoms ` l ) i^i |^|_ p e. m ( ( pmap ` l ) ` ( ( oc ` l ) ` p ) ) ) ) ) |
21 |
0 20
|
wceq |
|- _|_P = ( l e. _V |-> ( m e. ~P ( Atoms ` l ) |-> ( ( Atoms ` l ) i^i |^|_ p e. m ( ( pmap ` l ) ` ( ( oc ` l ) ` p ) ) ) ) ) |