Metamath Proof Explorer


Definition df-poset

Description: Define the class of partially ordered sets (posets). A poset is a set equipped with a partial order, that is, a binary relation which is reflexive, antisymmetric, and transitive. Unlike a total order, in a partial order there may be pairs of elements where neither precedes the other. Definition of poset in Crawley p. 1. Note that Crawley-Dilworth require that a poset base set be nonempty, but we follow the convention of most authors who don't make this a requirement.

In our formalism of extensible structures, the base set of a poset f is denoted by ( Basef ) and its partial order by ( lef ) (for "less than or equal to"). The quantifiers E. b E. r provide a notational shorthand to allow us to refer to the base and ordering relation as b and r in the definition rather than having to repeat ( Basef ) and ( lef ) throughout. These quantifiers can be eliminated with ceqsex2v and related theorems. (Contributed by NM, 18-Oct-2012)

Ref Expression
Assertion df-poset
|- Poset = { f | E. b E. r ( b = ( Base ` f ) /\ r = ( le ` f ) /\ A. x e. b A. y e. b A. z e. b ( x r x /\ ( ( x r y /\ y r x ) -> x = y ) /\ ( ( x r y /\ y r z ) -> x r z ) ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cpo
 |-  Poset
1 vf
 |-  f
2 vb
 |-  b
3 vr
 |-  r
4 2 cv
 |-  b
5 cbs
 |-  Base
6 1 cv
 |-  f
7 6 5 cfv
 |-  ( Base ` f )
8 4 7 wceq
 |-  b = ( Base ` f )
9 3 cv
 |-  r
10 cple
 |-  le
11 6 10 cfv
 |-  ( le ` f )
12 9 11 wceq
 |-  r = ( le ` f )
13 vx
 |-  x
14 vy
 |-  y
15 vz
 |-  z
16 13 cv
 |-  x
17 16 16 9 wbr
 |-  x r x
18 14 cv
 |-  y
19 16 18 9 wbr
 |-  x r y
20 18 16 9 wbr
 |-  y r x
21 19 20 wa
 |-  ( x r y /\ y r x )
22 16 18 wceq
 |-  x = y
23 21 22 wi
 |-  ( ( x r y /\ y r x ) -> x = y )
24 15 cv
 |-  z
25 18 24 9 wbr
 |-  y r z
26 19 25 wa
 |-  ( x r y /\ y r z )
27 16 24 9 wbr
 |-  x r z
28 26 27 wi
 |-  ( ( x r y /\ y r z ) -> x r z )
29 17 23 28 w3a
 |-  ( x r x /\ ( ( x r y /\ y r x ) -> x = y ) /\ ( ( x r y /\ y r z ) -> x r z ) )
30 29 15 4 wral
 |-  A. z e. b ( x r x /\ ( ( x r y /\ y r x ) -> x = y ) /\ ( ( x r y /\ y r z ) -> x r z ) )
31 30 14 4 wral
 |-  A. y e. b A. z e. b ( x r x /\ ( ( x r y /\ y r x ) -> x = y ) /\ ( ( x r y /\ y r z ) -> x r z ) )
32 31 13 4 wral
 |-  A. x e. b A. y e. b A. z e. b ( x r x /\ ( ( x r y /\ y r x ) -> x = y ) /\ ( ( x r y /\ y r z ) -> x r z ) )
33 8 12 32 w3a
 |-  ( b = ( Base ` f ) /\ r = ( le ` f ) /\ A. x e. b A. y e. b A. z e. b ( x r x /\ ( ( x r y /\ y r x ) -> x = y ) /\ ( ( x r y /\ y r z ) -> x r z ) ) )
34 33 3 wex
 |-  E. r ( b = ( Base ` f ) /\ r = ( le ` f ) /\ A. x e. b A. y e. b A. z e. b ( x r x /\ ( ( x r y /\ y r x ) -> x = y ) /\ ( ( x r y /\ y r z ) -> x r z ) ) )
35 34 2 wex
 |-  E. b E. r ( b = ( Base ` f ) /\ r = ( le ` f ) /\ A. x e. b A. y e. b A. z e. b ( x r x /\ ( ( x r y /\ y r x ) -> x = y ) /\ ( ( x r y /\ y r z ) -> x r z ) ) )
36 35 1 cab
 |-  { f | E. b E. r ( b = ( Base ` f ) /\ r = ( le ` f ) /\ A. x e. b A. y e. b A. z e. b ( x r x /\ ( ( x r y /\ y r x ) -> x = y ) /\ ( ( x r y /\ y r z ) -> x r z ) ) ) }
37 0 36 wceq
 |-  Poset = { f | E. b E. r ( b = ( Base ` f ) /\ r = ( le ` f ) /\ A. x e. b A. y e. b A. z e. b ( x r x /\ ( ( x r y /\ y r x ) -> x = y ) /\ ( ( x r y /\ y r z ) -> x r z ) ) ) }