Description: Define the class of partially ordered sets (posets). A poset is a set equipped with a partial order, that is, a binary relation which is reflexive, antisymmetric, and transitive. Unlike a total order, in a partial order there may be pairs of elements where neither precedes the other. Definition of poset in Crawley p. 1. Note that Crawley-Dilworth require that a poset base set be nonempty, but we follow the convention of most authors who don't make this a requirement.
In our formalism of extensible structures, the base set of a poset f is denoted by ( Basef ) and its partial order by ( lef ) (for "less than or equal to"). The quantifiers E. b E. r provide a notational shorthand to allow us to refer to the base and ordering relation as b and r in the definition rather than having to repeat ( Basef ) and ( lef ) throughout. These quantifiers can be eliminated with ceqsex2v and related theorems. (Contributed by NM, 18-Oct-2012)
Ref | Expression | ||
---|---|---|---|
Assertion | df-poset | |- Poset = { f | E. b E. r ( b = ( Base ` f ) /\ r = ( le ` f ) /\ A. x e. b A. y e. b A. z e. b ( x r x /\ ( ( x r y /\ y r x ) -> x = y ) /\ ( ( x r y /\ y r z ) -> x r z ) ) ) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cpo | |- Poset |
|
1 | vf | |- f |
|
2 | vb | |- b |
|
3 | vr | |- r |
|
4 | 2 | cv | |- b |
5 | cbs | |- Base |
|
6 | 1 | cv | |- f |
7 | 6 5 | cfv | |- ( Base ` f ) |
8 | 4 7 | wceq | |- b = ( Base ` f ) |
9 | 3 | cv | |- r |
10 | cple | |- le |
|
11 | 6 10 | cfv | |- ( le ` f ) |
12 | 9 11 | wceq | |- r = ( le ` f ) |
13 | vx | |- x |
|
14 | vy | |- y |
|
15 | vz | |- z |
|
16 | 13 | cv | |- x |
17 | 16 16 9 | wbr | |- x r x |
18 | 14 | cv | |- y |
19 | 16 18 9 | wbr | |- x r y |
20 | 18 16 9 | wbr | |- y r x |
21 | 19 20 | wa | |- ( x r y /\ y r x ) |
22 | 16 18 | wceq | |- x = y |
23 | 21 22 | wi | |- ( ( x r y /\ y r x ) -> x = y ) |
24 | 15 | cv | |- z |
25 | 18 24 9 | wbr | |- y r z |
26 | 19 25 | wa | |- ( x r y /\ y r z ) |
27 | 16 24 9 | wbr | |- x r z |
28 | 26 27 | wi | |- ( ( x r y /\ y r z ) -> x r z ) |
29 | 17 23 28 | w3a | |- ( x r x /\ ( ( x r y /\ y r x ) -> x = y ) /\ ( ( x r y /\ y r z ) -> x r z ) ) |
30 | 29 15 4 | wral | |- A. z e. b ( x r x /\ ( ( x r y /\ y r x ) -> x = y ) /\ ( ( x r y /\ y r z ) -> x r z ) ) |
31 | 30 14 4 | wral | |- A. y e. b A. z e. b ( x r x /\ ( ( x r y /\ y r x ) -> x = y ) /\ ( ( x r y /\ y r z ) -> x r z ) ) |
32 | 31 13 4 | wral | |- A. x e. b A. y e. b A. z e. b ( x r x /\ ( ( x r y /\ y r x ) -> x = y ) /\ ( ( x r y /\ y r z ) -> x r z ) ) |
33 | 8 12 32 | w3a | |- ( b = ( Base ` f ) /\ r = ( le ` f ) /\ A. x e. b A. y e. b A. z e. b ( x r x /\ ( ( x r y /\ y r x ) -> x = y ) /\ ( ( x r y /\ y r z ) -> x r z ) ) ) |
34 | 33 3 | wex | |- E. r ( b = ( Base ` f ) /\ r = ( le ` f ) /\ A. x e. b A. y e. b A. z e. b ( x r x /\ ( ( x r y /\ y r x ) -> x = y ) /\ ( ( x r y /\ y r z ) -> x r z ) ) ) |
35 | 34 2 | wex | |- E. b E. r ( b = ( Base ` f ) /\ r = ( le ` f ) /\ A. x e. b A. y e. b A. z e. b ( x r x /\ ( ( x r y /\ y r x ) -> x = y ) /\ ( ( x r y /\ y r z ) -> x r z ) ) ) |
36 | 35 1 | cab | |- { f | E. b E. r ( b = ( Base ` f ) /\ r = ( le ` f ) /\ A. x e. b A. y e. b A. z e. b ( x r x /\ ( ( x r y /\ y r x ) -> x = y ) /\ ( ( x r y /\ y r z ) -> x r z ) ) ) } |
37 | 0 36 | wceq | |- Poset = { f | E. b E. r ( b = ( Base ` f ) /\ r = ( le ` f ) /\ A. x e. b A. y e. b A. z e. b ( x r x /\ ( ( x r y /\ y r x ) -> x = y ) /\ ( ( x r y /\ y r z ) -> x r z ) ) ) } |