Metamath Proof Explorer


Definition df-prds

Description: Define a structure product. This can be a product of groups, rings, modules, or ordered topological fields; any unused components will have garbage in them but this is usually not relevant for the purpose of inheriting the structures present in the factors. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by Thierry Arnoux, 15-Jun-2019) (Revised by Zhi Wang, 18-Aug-2024)

Ref Expression
Assertion df-prds
|- Xs_ = ( s e. _V , r e. _V |-> [_ X_ x e. dom r ( Base ` ( r ` x ) ) / v ]_ [_ ( f e. v , g e. v |-> X_ x e. dom r ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) ) / h ]_ ( ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .r ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , s >. , <. ( .s ` ndx ) , ( f e. ( Base ` s ) , g e. v |-> ( x e. dom r |-> ( f ( .s ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .i ` ndx ) , ( f e. v , g e. v |-> ( s gsum ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) ) ) >. } ) u. ( { <. ( TopSet ` ndx ) , ( Xt_ ` ( TopOpen o. r ) ) >. , <. ( le ` ndx ) , { <. f , g >. | ( { f , g } C_ v /\ A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) ) } >. , <. ( dist ` ndx ) , ( f e. v , g e. v |-> sup ( ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) >. } u. { <. ( Hom ` ndx ) , h >. , <. ( comp ` ndx ) , ( a e. ( v X. v ) , c e. v |-> ( d e. ( ( 2nd ` a ) h c ) , e e. ( h ` a ) |-> ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. } ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cprds
 |-  Xs_
1 vs
 |-  s
2 cvv
 |-  _V
3 vr
 |-  r
4 vx
 |-  x
5 3 cv
 |-  r
6 5 cdm
 |-  dom r
7 cbs
 |-  Base
8 4 cv
 |-  x
9 8 5 cfv
 |-  ( r ` x )
10 9 7 cfv
 |-  ( Base ` ( r ` x ) )
11 4 6 10 cixp
 |-  X_ x e. dom r ( Base ` ( r ` x ) )
12 vv
 |-  v
13 vf
 |-  f
14 12 cv
 |-  v
15 vg
 |-  g
16 13 cv
 |-  f
17 8 16 cfv
 |-  ( f ` x )
18 chom
 |-  Hom
19 9 18 cfv
 |-  ( Hom ` ( r ` x ) )
20 15 cv
 |-  g
21 8 20 cfv
 |-  ( g ` x )
22 17 21 19 co
 |-  ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) )
23 4 6 22 cixp
 |-  X_ x e. dom r ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) )
24 13 15 14 14 23 cmpo
 |-  ( f e. v , g e. v |-> X_ x e. dom r ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) )
25 vh
 |-  h
26 cnx
 |-  ndx
27 26 7 cfv
 |-  ( Base ` ndx )
28 27 14 cop
 |-  <. ( Base ` ndx ) , v >.
29 cplusg
 |-  +g
30 26 29 cfv
 |-  ( +g ` ndx )
31 9 29 cfv
 |-  ( +g ` ( r ` x ) )
32 17 21 31 co
 |-  ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) )
33 4 6 32 cmpt
 |-  ( x e. dom r |-> ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) )
34 13 15 14 14 33 cmpo
 |-  ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) ) )
35 30 34 cop
 |-  <. ( +g ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) ) ) >.
36 cmulr
 |-  .r
37 26 36 cfv
 |-  ( .r ` ndx )
38 9 36 cfv
 |-  ( .r ` ( r ` x ) )
39 17 21 38 co
 |-  ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) )
40 4 6 39 cmpt
 |-  ( x e. dom r |-> ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) )
41 13 15 14 14 40 cmpo
 |-  ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) ) )
42 37 41 cop
 |-  <. ( .r ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) ) ) >.
43 28 35 42 ctp
 |-  { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .r ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) ) ) >. }
44 csca
 |-  Scalar
45 26 44 cfv
 |-  ( Scalar ` ndx )
46 1 cv
 |-  s
47 45 46 cop
 |-  <. ( Scalar ` ndx ) , s >.
48 cvsca
 |-  .s
49 26 48 cfv
 |-  ( .s ` ndx )
50 46 7 cfv
 |-  ( Base ` s )
51 9 48 cfv
 |-  ( .s ` ( r ` x ) )
52 16 21 51 co
 |-  ( f ( .s ` ( r ` x ) ) ( g ` x ) )
53 4 6 52 cmpt
 |-  ( x e. dom r |-> ( f ( .s ` ( r ` x ) ) ( g ` x ) ) )
54 13 15 50 14 53 cmpo
 |-  ( f e. ( Base ` s ) , g e. v |-> ( x e. dom r |-> ( f ( .s ` ( r ` x ) ) ( g ` x ) ) ) )
55 49 54 cop
 |-  <. ( .s ` ndx ) , ( f e. ( Base ` s ) , g e. v |-> ( x e. dom r |-> ( f ( .s ` ( r ` x ) ) ( g ` x ) ) ) ) >.
56 cip
 |-  .i
57 26 56 cfv
 |-  ( .i ` ndx )
58 cgsu
 |-  gsum
59 9 56 cfv
 |-  ( .i ` ( r ` x ) )
60 17 21 59 co
 |-  ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) )
61 4 6 60 cmpt
 |-  ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) )
62 46 61 58 co
 |-  ( s gsum ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) )
63 13 15 14 14 62 cmpo
 |-  ( f e. v , g e. v |-> ( s gsum ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) ) )
64 57 63 cop
 |-  <. ( .i ` ndx ) , ( f e. v , g e. v |-> ( s gsum ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) ) ) >.
65 47 55 64 ctp
 |-  { <. ( Scalar ` ndx ) , s >. , <. ( .s ` ndx ) , ( f e. ( Base ` s ) , g e. v |-> ( x e. dom r |-> ( f ( .s ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .i ` ndx ) , ( f e. v , g e. v |-> ( s gsum ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) ) ) >. }
66 43 65 cun
 |-  ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .r ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , s >. , <. ( .s ` ndx ) , ( f e. ( Base ` s ) , g e. v |-> ( x e. dom r |-> ( f ( .s ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .i ` ndx ) , ( f e. v , g e. v |-> ( s gsum ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) ) ) >. } )
67 cts
 |-  TopSet
68 26 67 cfv
 |-  ( TopSet ` ndx )
69 cpt
 |-  Xt_
70 ctopn
 |-  TopOpen
71 70 5 ccom
 |-  ( TopOpen o. r )
72 71 69 cfv
 |-  ( Xt_ ` ( TopOpen o. r ) )
73 68 72 cop
 |-  <. ( TopSet ` ndx ) , ( Xt_ ` ( TopOpen o. r ) ) >.
74 cple
 |-  le
75 26 74 cfv
 |-  ( le ` ndx )
76 16 20 cpr
 |-  { f , g }
77 76 14 wss
 |-  { f , g } C_ v
78 9 74 cfv
 |-  ( le ` ( r ` x ) )
79 17 21 78 wbr
 |-  ( f ` x ) ( le ` ( r ` x ) ) ( g ` x )
80 79 4 6 wral
 |-  A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x )
81 77 80 wa
 |-  ( { f , g } C_ v /\ A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) )
82 81 13 15 copab
 |-  { <. f , g >. | ( { f , g } C_ v /\ A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) ) }
83 75 82 cop
 |-  <. ( le ` ndx ) , { <. f , g >. | ( { f , g } C_ v /\ A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) ) } >.
84 cds
 |-  dist
85 26 84 cfv
 |-  ( dist ` ndx )
86 9 84 cfv
 |-  ( dist ` ( r ` x ) )
87 17 21 86 co
 |-  ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) )
88 4 6 87 cmpt
 |-  ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) )
89 88 crn
 |-  ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) )
90 cc0
 |-  0
91 90 csn
 |-  { 0 }
92 89 91 cun
 |-  ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } )
93 cxr
 |-  RR*
94 clt
 |-  <
95 92 93 94 csup
 |-  sup ( ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < )
96 13 15 14 14 95 cmpo
 |-  ( f e. v , g e. v |-> sup ( ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) )
97 85 96 cop
 |-  <. ( dist ` ndx ) , ( f e. v , g e. v |-> sup ( ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) >.
98 73 83 97 ctp
 |-  { <. ( TopSet ` ndx ) , ( Xt_ ` ( TopOpen o. r ) ) >. , <. ( le ` ndx ) , { <. f , g >. | ( { f , g } C_ v /\ A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) ) } >. , <. ( dist ` ndx ) , ( f e. v , g e. v |-> sup ( ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) >. }
99 26 18 cfv
 |-  ( Hom ` ndx )
100 25 cv
 |-  h
101 99 100 cop
 |-  <. ( Hom ` ndx ) , h >.
102 cco
 |-  comp
103 26 102 cfv
 |-  ( comp ` ndx )
104 va
 |-  a
105 14 14 cxp
 |-  ( v X. v )
106 vc
 |-  c
107 vd
 |-  d
108 c2nd
 |-  2nd
109 104 cv
 |-  a
110 109 108 cfv
 |-  ( 2nd ` a )
111 106 cv
 |-  c
112 110 111 100 co
 |-  ( ( 2nd ` a ) h c )
113 ve
 |-  e
114 109 100 cfv
 |-  ( h ` a )
115 107 cv
 |-  d
116 8 115 cfv
 |-  ( d ` x )
117 c1st
 |-  1st
118 109 117 cfv
 |-  ( 1st ` a )
119 8 118 cfv
 |-  ( ( 1st ` a ) ` x )
120 8 110 cfv
 |-  ( ( 2nd ` a ) ` x )
121 119 120 cop
 |-  <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >.
122 9 102 cfv
 |-  ( comp ` ( r ` x ) )
123 8 111 cfv
 |-  ( c ` x )
124 121 123 122 co
 |-  ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) )
125 113 cv
 |-  e
126 8 125 cfv
 |-  ( e ` x )
127 116 126 124 co
 |-  ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) )
128 4 6 127 cmpt
 |-  ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) )
129 107 113 112 114 128 cmpo
 |-  ( d e. ( ( 2nd ` a ) h c ) , e e. ( h ` a ) |-> ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) ) )
130 104 106 105 14 129 cmpo
 |-  ( a e. ( v X. v ) , c e. v |-> ( d e. ( ( 2nd ` a ) h c ) , e e. ( h ` a ) |-> ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) )
131 103 130 cop
 |-  <. ( comp ` ndx ) , ( a e. ( v X. v ) , c e. v |-> ( d e. ( ( 2nd ` a ) h c ) , e e. ( h ` a ) |-> ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >.
132 101 131 cpr
 |-  { <. ( Hom ` ndx ) , h >. , <. ( comp ` ndx ) , ( a e. ( v X. v ) , c e. v |-> ( d e. ( ( 2nd ` a ) h c ) , e e. ( h ` a ) |-> ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. }
133 98 132 cun
 |-  ( { <. ( TopSet ` ndx ) , ( Xt_ ` ( TopOpen o. r ) ) >. , <. ( le ` ndx ) , { <. f , g >. | ( { f , g } C_ v /\ A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) ) } >. , <. ( dist ` ndx ) , ( f e. v , g e. v |-> sup ( ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) >. } u. { <. ( Hom ` ndx ) , h >. , <. ( comp ` ndx ) , ( a e. ( v X. v ) , c e. v |-> ( d e. ( ( 2nd ` a ) h c ) , e e. ( h ` a ) |-> ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. } )
134 66 133 cun
 |-  ( ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .r ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , s >. , <. ( .s ` ndx ) , ( f e. ( Base ` s ) , g e. v |-> ( x e. dom r |-> ( f ( .s ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .i ` ndx ) , ( f e. v , g e. v |-> ( s gsum ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) ) ) >. } ) u. ( { <. ( TopSet ` ndx ) , ( Xt_ ` ( TopOpen o. r ) ) >. , <. ( le ` ndx ) , { <. f , g >. | ( { f , g } C_ v /\ A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) ) } >. , <. ( dist ` ndx ) , ( f e. v , g e. v |-> sup ( ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) >. } u. { <. ( Hom ` ndx ) , h >. , <. ( comp ` ndx ) , ( a e. ( v X. v ) , c e. v |-> ( d e. ( ( 2nd ` a ) h c ) , e e. ( h ` a ) |-> ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. } ) )
135 25 24 134 csb
 |-  [_ ( f e. v , g e. v |-> X_ x e. dom r ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) ) / h ]_ ( ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .r ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , s >. , <. ( .s ` ndx ) , ( f e. ( Base ` s ) , g e. v |-> ( x e. dom r |-> ( f ( .s ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .i ` ndx ) , ( f e. v , g e. v |-> ( s gsum ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) ) ) >. } ) u. ( { <. ( TopSet ` ndx ) , ( Xt_ ` ( TopOpen o. r ) ) >. , <. ( le ` ndx ) , { <. f , g >. | ( { f , g } C_ v /\ A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) ) } >. , <. ( dist ` ndx ) , ( f e. v , g e. v |-> sup ( ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) >. } u. { <. ( Hom ` ndx ) , h >. , <. ( comp ` ndx ) , ( a e. ( v X. v ) , c e. v |-> ( d e. ( ( 2nd ` a ) h c ) , e e. ( h ` a ) |-> ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. } ) )
136 12 11 135 csb
 |-  [_ X_ x e. dom r ( Base ` ( r ` x ) ) / v ]_ [_ ( f e. v , g e. v |-> X_ x e. dom r ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) ) / h ]_ ( ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .r ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , s >. , <. ( .s ` ndx ) , ( f e. ( Base ` s ) , g e. v |-> ( x e. dom r |-> ( f ( .s ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .i ` ndx ) , ( f e. v , g e. v |-> ( s gsum ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) ) ) >. } ) u. ( { <. ( TopSet ` ndx ) , ( Xt_ ` ( TopOpen o. r ) ) >. , <. ( le ` ndx ) , { <. f , g >. | ( { f , g } C_ v /\ A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) ) } >. , <. ( dist ` ndx ) , ( f e. v , g e. v |-> sup ( ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) >. } u. { <. ( Hom ` ndx ) , h >. , <. ( comp ` ndx ) , ( a e. ( v X. v ) , c e. v |-> ( d e. ( ( 2nd ` a ) h c ) , e e. ( h ` a ) |-> ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. } ) )
137 1 3 2 2 136 cmpo
 |-  ( s e. _V , r e. _V |-> [_ X_ x e. dom r ( Base ` ( r ` x ) ) / v ]_ [_ ( f e. v , g e. v |-> X_ x e. dom r ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) ) / h ]_ ( ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .r ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , s >. , <. ( .s ` ndx ) , ( f e. ( Base ` s ) , g e. v |-> ( x e. dom r |-> ( f ( .s ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .i ` ndx ) , ( f e. v , g e. v |-> ( s gsum ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) ) ) >. } ) u. ( { <. ( TopSet ` ndx ) , ( Xt_ ` ( TopOpen o. r ) ) >. , <. ( le ` ndx ) , { <. f , g >. | ( { f , g } C_ v /\ A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) ) } >. , <. ( dist ` ndx ) , ( f e. v , g e. v |-> sup ( ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) >. } u. { <. ( Hom ` ndx ) , h >. , <. ( comp ` ndx ) , ( a e. ( v X. v ) , c e. v |-> ( d e. ( ( 2nd ` a ) h c ) , e e. ( h ` a ) |-> ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. } ) ) )
138 0 137 wceq
 |-  Xs_ = ( s e. _V , r e. _V |-> [_ X_ x e. dom r ( Base ` ( r ` x ) ) / v ]_ [_ ( f e. v , g e. v |-> X_ x e. dom r ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) ) / h ]_ ( ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .r ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , s >. , <. ( .s ` ndx ) , ( f e. ( Base ` s ) , g e. v |-> ( x e. dom r |-> ( f ( .s ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .i ` ndx ) , ( f e. v , g e. v |-> ( s gsum ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) ) ) >. } ) u. ( { <. ( TopSet ` ndx ) , ( Xt_ ` ( TopOpen o. r ) ) >. , <. ( le ` ndx ) , { <. f , g >. | ( { f , g } C_ v /\ A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) ) } >. , <. ( dist ` ndx ) , ( f e. v , g e. v |-> sup ( ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) >. } u. { <. ( Hom ` ndx ) , h >. , <. ( comp ` ndx ) , ( a e. ( v X. v ) , c e. v |-> ( d e. ( ( 2nd ` a ) h c ) , e e. ( h ` a ) |-> ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. } ) ) )