Step |
Hyp |
Ref |
Expression |
0 |
|
cprds |
|- Xs_ |
1 |
|
vs |
|- s |
2 |
|
cvv |
|- _V |
3 |
|
vr |
|- r |
4 |
|
vx |
|- x |
5 |
3
|
cv |
|- r |
6 |
5
|
cdm |
|- dom r |
7 |
|
cbs |
|- Base |
8 |
4
|
cv |
|- x |
9 |
8 5
|
cfv |
|- ( r ` x ) |
10 |
9 7
|
cfv |
|- ( Base ` ( r ` x ) ) |
11 |
4 6 10
|
cixp |
|- X_ x e. dom r ( Base ` ( r ` x ) ) |
12 |
|
vv |
|- v |
13 |
|
vf |
|- f |
14 |
12
|
cv |
|- v |
15 |
|
vg |
|- g |
16 |
13
|
cv |
|- f |
17 |
8 16
|
cfv |
|- ( f ` x ) |
18 |
|
chom |
|- Hom |
19 |
9 18
|
cfv |
|- ( Hom ` ( r ` x ) ) |
20 |
15
|
cv |
|- g |
21 |
8 20
|
cfv |
|- ( g ` x ) |
22 |
17 21 19
|
co |
|- ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) |
23 |
4 6 22
|
cixp |
|- X_ x e. dom r ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) |
24 |
13 15 14 14 23
|
cmpo |
|- ( f e. v , g e. v |-> X_ x e. dom r ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) ) |
25 |
|
vh |
|- h |
26 |
|
cnx |
|- ndx |
27 |
26 7
|
cfv |
|- ( Base ` ndx ) |
28 |
27 14
|
cop |
|- <. ( Base ` ndx ) , v >. |
29 |
|
cplusg |
|- +g |
30 |
26 29
|
cfv |
|- ( +g ` ndx ) |
31 |
9 29
|
cfv |
|- ( +g ` ( r ` x ) ) |
32 |
17 21 31
|
co |
|- ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) |
33 |
4 6 32
|
cmpt |
|- ( x e. dom r |-> ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) ) |
34 |
13 15 14 14 33
|
cmpo |
|- ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) ) ) |
35 |
30 34
|
cop |
|- <. ( +g ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) ) ) >. |
36 |
|
cmulr |
|- .r |
37 |
26 36
|
cfv |
|- ( .r ` ndx ) |
38 |
9 36
|
cfv |
|- ( .r ` ( r ` x ) ) |
39 |
17 21 38
|
co |
|- ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) |
40 |
4 6 39
|
cmpt |
|- ( x e. dom r |-> ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) ) |
41 |
13 15 14 14 40
|
cmpo |
|- ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) ) ) |
42 |
37 41
|
cop |
|- <. ( .r ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) ) ) >. |
43 |
28 35 42
|
ctp |
|- { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .r ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) ) ) >. } |
44 |
|
csca |
|- Scalar |
45 |
26 44
|
cfv |
|- ( Scalar ` ndx ) |
46 |
1
|
cv |
|- s |
47 |
45 46
|
cop |
|- <. ( Scalar ` ndx ) , s >. |
48 |
|
cvsca |
|- .s |
49 |
26 48
|
cfv |
|- ( .s ` ndx ) |
50 |
46 7
|
cfv |
|- ( Base ` s ) |
51 |
9 48
|
cfv |
|- ( .s ` ( r ` x ) ) |
52 |
16 21 51
|
co |
|- ( f ( .s ` ( r ` x ) ) ( g ` x ) ) |
53 |
4 6 52
|
cmpt |
|- ( x e. dom r |-> ( f ( .s ` ( r ` x ) ) ( g ` x ) ) ) |
54 |
13 15 50 14 53
|
cmpo |
|- ( f e. ( Base ` s ) , g e. v |-> ( x e. dom r |-> ( f ( .s ` ( r ` x ) ) ( g ` x ) ) ) ) |
55 |
49 54
|
cop |
|- <. ( .s ` ndx ) , ( f e. ( Base ` s ) , g e. v |-> ( x e. dom r |-> ( f ( .s ` ( r ` x ) ) ( g ` x ) ) ) ) >. |
56 |
|
cip |
|- .i |
57 |
26 56
|
cfv |
|- ( .i ` ndx ) |
58 |
|
cgsu |
|- gsum |
59 |
9 56
|
cfv |
|- ( .i ` ( r ` x ) ) |
60 |
17 21 59
|
co |
|- ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) |
61 |
4 6 60
|
cmpt |
|- ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) |
62 |
46 61 58
|
co |
|- ( s gsum ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) ) |
63 |
13 15 14 14 62
|
cmpo |
|- ( f e. v , g e. v |-> ( s gsum ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) ) ) |
64 |
57 63
|
cop |
|- <. ( .i ` ndx ) , ( f e. v , g e. v |-> ( s gsum ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) ) ) >. |
65 |
47 55 64
|
ctp |
|- { <. ( Scalar ` ndx ) , s >. , <. ( .s ` ndx ) , ( f e. ( Base ` s ) , g e. v |-> ( x e. dom r |-> ( f ( .s ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .i ` ndx ) , ( f e. v , g e. v |-> ( s gsum ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) ) ) >. } |
66 |
43 65
|
cun |
|- ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .r ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , s >. , <. ( .s ` ndx ) , ( f e. ( Base ` s ) , g e. v |-> ( x e. dom r |-> ( f ( .s ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .i ` ndx ) , ( f e. v , g e. v |-> ( s gsum ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) ) ) >. } ) |
67 |
|
cts |
|- TopSet |
68 |
26 67
|
cfv |
|- ( TopSet ` ndx ) |
69 |
|
cpt |
|- Xt_ |
70 |
|
ctopn |
|- TopOpen |
71 |
70 5
|
ccom |
|- ( TopOpen o. r ) |
72 |
71 69
|
cfv |
|- ( Xt_ ` ( TopOpen o. r ) ) |
73 |
68 72
|
cop |
|- <. ( TopSet ` ndx ) , ( Xt_ ` ( TopOpen o. r ) ) >. |
74 |
|
cple |
|- le |
75 |
26 74
|
cfv |
|- ( le ` ndx ) |
76 |
16 20
|
cpr |
|- { f , g } |
77 |
76 14
|
wss |
|- { f , g } C_ v |
78 |
9 74
|
cfv |
|- ( le ` ( r ` x ) ) |
79 |
17 21 78
|
wbr |
|- ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) |
80 |
79 4 6
|
wral |
|- A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) |
81 |
77 80
|
wa |
|- ( { f , g } C_ v /\ A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) ) |
82 |
81 13 15
|
copab |
|- { <. f , g >. | ( { f , g } C_ v /\ A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) ) } |
83 |
75 82
|
cop |
|- <. ( le ` ndx ) , { <. f , g >. | ( { f , g } C_ v /\ A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) ) } >. |
84 |
|
cds |
|- dist |
85 |
26 84
|
cfv |
|- ( dist ` ndx ) |
86 |
9 84
|
cfv |
|- ( dist ` ( r ` x ) ) |
87 |
17 21 86
|
co |
|- ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) |
88 |
4 6 87
|
cmpt |
|- ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) |
89 |
88
|
crn |
|- ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) |
90 |
|
cc0 |
|- 0 |
91 |
90
|
csn |
|- { 0 } |
92 |
89 91
|
cun |
|- ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } ) |
93 |
|
cxr |
|- RR* |
94 |
|
clt |
|- < |
95 |
92 93 94
|
csup |
|- sup ( ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) |
96 |
13 15 14 14 95
|
cmpo |
|- ( f e. v , g e. v |-> sup ( ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) |
97 |
85 96
|
cop |
|- <. ( dist ` ndx ) , ( f e. v , g e. v |-> sup ( ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) >. |
98 |
73 83 97
|
ctp |
|- { <. ( TopSet ` ndx ) , ( Xt_ ` ( TopOpen o. r ) ) >. , <. ( le ` ndx ) , { <. f , g >. | ( { f , g } C_ v /\ A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) ) } >. , <. ( dist ` ndx ) , ( f e. v , g e. v |-> sup ( ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) >. } |
99 |
26 18
|
cfv |
|- ( Hom ` ndx ) |
100 |
25
|
cv |
|- h |
101 |
99 100
|
cop |
|- <. ( Hom ` ndx ) , h >. |
102 |
|
cco |
|- comp |
103 |
26 102
|
cfv |
|- ( comp ` ndx ) |
104 |
|
va |
|- a |
105 |
14 14
|
cxp |
|- ( v X. v ) |
106 |
|
vc |
|- c |
107 |
|
vd |
|- d |
108 |
|
c2nd |
|- 2nd |
109 |
104
|
cv |
|- a |
110 |
109 108
|
cfv |
|- ( 2nd ` a ) |
111 |
106
|
cv |
|- c |
112 |
110 111 100
|
co |
|- ( ( 2nd ` a ) h c ) |
113 |
|
ve |
|- e |
114 |
109 100
|
cfv |
|- ( h ` a ) |
115 |
107
|
cv |
|- d |
116 |
8 115
|
cfv |
|- ( d ` x ) |
117 |
|
c1st |
|- 1st |
118 |
109 117
|
cfv |
|- ( 1st ` a ) |
119 |
8 118
|
cfv |
|- ( ( 1st ` a ) ` x ) |
120 |
8 110
|
cfv |
|- ( ( 2nd ` a ) ` x ) |
121 |
119 120
|
cop |
|- <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. |
122 |
9 102
|
cfv |
|- ( comp ` ( r ` x ) ) |
123 |
8 111
|
cfv |
|- ( c ` x ) |
124 |
121 123 122
|
co |
|- ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) |
125 |
113
|
cv |
|- e |
126 |
8 125
|
cfv |
|- ( e ` x ) |
127 |
116 126 124
|
co |
|- ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) |
128 |
4 6 127
|
cmpt |
|- ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) ) |
129 |
107 113 112 114 128
|
cmpo |
|- ( d e. ( ( 2nd ` a ) h c ) , e e. ( h ` a ) |-> ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) |
130 |
104 106 105 14 129
|
cmpo |
|- ( a e. ( v X. v ) , c e. v |-> ( d e. ( ( 2nd ` a ) h c ) , e e. ( h ` a ) |-> ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) |
131 |
103 130
|
cop |
|- <. ( comp ` ndx ) , ( a e. ( v X. v ) , c e. v |-> ( d e. ( ( 2nd ` a ) h c ) , e e. ( h ` a ) |-> ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. |
132 |
101 131
|
cpr |
|- { <. ( Hom ` ndx ) , h >. , <. ( comp ` ndx ) , ( a e. ( v X. v ) , c e. v |-> ( d e. ( ( 2nd ` a ) h c ) , e e. ( h ` a ) |-> ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. } |
133 |
98 132
|
cun |
|- ( { <. ( TopSet ` ndx ) , ( Xt_ ` ( TopOpen o. r ) ) >. , <. ( le ` ndx ) , { <. f , g >. | ( { f , g } C_ v /\ A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) ) } >. , <. ( dist ` ndx ) , ( f e. v , g e. v |-> sup ( ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) >. } u. { <. ( Hom ` ndx ) , h >. , <. ( comp ` ndx ) , ( a e. ( v X. v ) , c e. v |-> ( d e. ( ( 2nd ` a ) h c ) , e e. ( h ` a ) |-> ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. } ) |
134 |
66 133
|
cun |
|- ( ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .r ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , s >. , <. ( .s ` ndx ) , ( f e. ( Base ` s ) , g e. v |-> ( x e. dom r |-> ( f ( .s ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .i ` ndx ) , ( f e. v , g e. v |-> ( s gsum ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) ) ) >. } ) u. ( { <. ( TopSet ` ndx ) , ( Xt_ ` ( TopOpen o. r ) ) >. , <. ( le ` ndx ) , { <. f , g >. | ( { f , g } C_ v /\ A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) ) } >. , <. ( dist ` ndx ) , ( f e. v , g e. v |-> sup ( ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) >. } u. { <. ( Hom ` ndx ) , h >. , <. ( comp ` ndx ) , ( a e. ( v X. v ) , c e. v |-> ( d e. ( ( 2nd ` a ) h c ) , e e. ( h ` a ) |-> ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. } ) ) |
135 |
25 24 134
|
csb |
|- [_ ( f e. v , g e. v |-> X_ x e. dom r ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) ) / h ]_ ( ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .r ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , s >. , <. ( .s ` ndx ) , ( f e. ( Base ` s ) , g e. v |-> ( x e. dom r |-> ( f ( .s ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .i ` ndx ) , ( f e. v , g e. v |-> ( s gsum ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) ) ) >. } ) u. ( { <. ( TopSet ` ndx ) , ( Xt_ ` ( TopOpen o. r ) ) >. , <. ( le ` ndx ) , { <. f , g >. | ( { f , g } C_ v /\ A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) ) } >. , <. ( dist ` ndx ) , ( f e. v , g e. v |-> sup ( ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) >. } u. { <. ( Hom ` ndx ) , h >. , <. ( comp ` ndx ) , ( a e. ( v X. v ) , c e. v |-> ( d e. ( ( 2nd ` a ) h c ) , e e. ( h ` a ) |-> ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. } ) ) |
136 |
12 11 135
|
csb |
|- [_ X_ x e. dom r ( Base ` ( r ` x ) ) / v ]_ [_ ( f e. v , g e. v |-> X_ x e. dom r ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) ) / h ]_ ( ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .r ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , s >. , <. ( .s ` ndx ) , ( f e. ( Base ` s ) , g e. v |-> ( x e. dom r |-> ( f ( .s ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .i ` ndx ) , ( f e. v , g e. v |-> ( s gsum ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) ) ) >. } ) u. ( { <. ( TopSet ` ndx ) , ( Xt_ ` ( TopOpen o. r ) ) >. , <. ( le ` ndx ) , { <. f , g >. | ( { f , g } C_ v /\ A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) ) } >. , <. ( dist ` ndx ) , ( f e. v , g e. v |-> sup ( ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) >. } u. { <. ( Hom ` ndx ) , h >. , <. ( comp ` ndx ) , ( a e. ( v X. v ) , c e. v |-> ( d e. ( ( 2nd ` a ) h c ) , e e. ( h ` a ) |-> ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. } ) ) |
137 |
1 3 2 2 136
|
cmpo |
|- ( s e. _V , r e. _V |-> [_ X_ x e. dom r ( Base ` ( r ` x ) ) / v ]_ [_ ( f e. v , g e. v |-> X_ x e. dom r ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) ) / h ]_ ( ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .r ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , s >. , <. ( .s ` ndx ) , ( f e. ( Base ` s ) , g e. v |-> ( x e. dom r |-> ( f ( .s ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .i ` ndx ) , ( f e. v , g e. v |-> ( s gsum ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) ) ) >. } ) u. ( { <. ( TopSet ` ndx ) , ( Xt_ ` ( TopOpen o. r ) ) >. , <. ( le ` ndx ) , { <. f , g >. | ( { f , g } C_ v /\ A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) ) } >. , <. ( dist ` ndx ) , ( f e. v , g e. v |-> sup ( ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) >. } u. { <. ( Hom ` ndx ) , h >. , <. ( comp ` ndx ) , ( a e. ( v X. v ) , c e. v |-> ( d e. ( ( 2nd ` a ) h c ) , e e. ( h ` a ) |-> ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. } ) ) ) |
138 |
0 137
|
wceq |
|- Xs_ = ( s e. _V , r e. _V |-> [_ X_ x e. dom r ( Base ` ( r ` x ) ) / v ]_ [_ ( f e. v , g e. v |-> X_ x e. dom r ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) ) / h ]_ ( ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .r ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , s >. , <. ( .s ` ndx ) , ( f e. ( Base ` s ) , g e. v |-> ( x e. dom r |-> ( f ( .s ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .i ` ndx ) , ( f e. v , g e. v |-> ( s gsum ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) ) ) >. } ) u. ( { <. ( TopSet ` ndx ) , ( Xt_ ` ( TopOpen o. r ) ) >. , <. ( le ` ndx ) , { <. f , g >. | ( { f , g } C_ v /\ A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) ) } >. , <. ( dist ` ndx ) , ( f e. v , g e. v |-> sup ( ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) >. } u. { <. ( Hom ` ndx ) , h >. , <. ( comp ` ndx ) , ( a e. ( v X. v ) , c e. v |-> ( d e. ( ( 2nd ` a ) h c ) , e e. ( h ` a ) |-> ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. } ) ) ) |