Metamath Proof Explorer


Definition df-pred

Description: Define the predecessor class of a binary relation. This is the class of all elements y of A such that y R X (see elpred ). (Contributed by Scott Fenton, 29-Jan-2011)

Ref Expression
Assertion df-pred
|- Pred ( R , A , X ) = ( A i^i ( `' R " { X } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cR
 |-  R
1 cA
 |-  A
2 cX
 |-  X
3 1 0 2 cpred
 |-  Pred ( R , A , X )
4 0 ccnv
 |-  `' R
5 2 csn
 |-  { X }
6 4 5 cima
 |-  ( `' R " { X } )
7 1 6 cin
 |-  ( A i^i ( `' R " { X } ) )
8 3 7 wceq
 |-  Pred ( R , A , X ) = ( A i^i ( `' R " { X } ) )