Description: Define the predecessor class of a binary relation. This is the class of all elements y of A such that y R X (see elpred ). (Contributed by Scott Fenton, 29-Jan-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-pred | |- Pred ( R , A , X ) = ( A i^i ( `' R " { X } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cR | |- R |
|
| 1 | cA | |- A |
|
| 2 | cX | |- X |
|
| 3 | 1 0 2 | cpred | |- Pred ( R , A , X ) |
| 4 | 0 | ccnv | |- `' R |
| 5 | 2 | csn | |- { X } |
| 6 | 4 5 | cima | |- ( `' R " { X } ) |
| 7 | 1 6 | cin | |- ( A i^i ( `' R " { X } ) ) |
| 8 | 3 7 | wceq | |- Pred ( R , A , X ) = ( A i^i ( `' R " { X } ) ) |