Description: Define the predecessor class of a binary relation. This is the class of all elements y of A such that y R X (see elpred ). (Contributed by Scott Fenton, 29-Jan-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | df-pred | |- Pred ( R , A , X ) = ( A i^i ( `' R " { X } ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cR | |- R |
|
1 | cA | |- A |
|
2 | cX | |- X |
|
3 | 1 0 2 | cpred | |- Pred ( R , A , X ) |
4 | 0 | ccnv | |- `' R |
5 | 2 | csn | |- { X } |
6 | 4 5 | cima | |- ( `' R " { X } ) |
7 | 1 6 | cin | |- ( A i^i ( `' R " { X } ) ) |
8 | 3 7 | wceq | |- Pred ( R , A , X ) = ( A i^i ( `' R " { X } ) ) |