Metamath Proof Explorer


Definition df-prm

Description: Define the set of prime numbers. (Contributed by Paul Chapman, 22-Jun-2011)

Ref Expression
Assertion df-prm
|- Prime = { p e. NN | { n e. NN | n || p } ~~ 2o }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cprime
 |-  Prime
1 vp
 |-  p
2 cn
 |-  NN
3 vn
 |-  n
4 3 cv
 |-  n
5 cdvds
 |-  ||
6 1 cv
 |-  p
7 4 6 5 wbr
 |-  n || p
8 7 3 2 crab
 |-  { n e. NN | n || p }
9 cen
 |-  ~~
10 c2o
 |-  2o
11 8 10 9 wbr
 |-  { n e. NN | n || p } ~~ 2o
12 11 1 2 crab
 |-  { p e. NN | { n e. NN | n || p } ~~ 2o }
13 0 12 wceq
 |-  Prime = { p e. NN | { n e. NN | n || p } ~~ 2o }