Metamath Proof Explorer


Definition df-prmo

Description: Define the primorial function on nonnegative integers as the product of all prime numbers less than or equal to the integer. For example, ( #p1 0 ) = 2 x. 3 x. 5 x. 7 = 2 1 0 (see ex-prmo ).

In the literature, the primorial function is written as a postscript hash: 6# = 30. In contrast to prmorcht , where the primorial function is defined by using the sequence builder ( P = seq 1 ( x. , F ) ), the more specialized definition of a product of a series is used here. (Contributed by AV, 28-Aug-2020)

Ref Expression
Assertion df-prmo
|- #p = ( n e. NN0 |-> prod_ k e. ( 1 ... n ) if ( k e. Prime , k , 1 ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cprmo
 |-  #p
1 vn
 |-  n
2 cn0
 |-  NN0
3 vk
 |-  k
4 c1
 |-  1
5 cfz
 |-  ...
6 1 cv
 |-  n
7 4 6 5 co
 |-  ( 1 ... n )
8 3 cv
 |-  k
9 cprime
 |-  Prime
10 8 9 wcel
 |-  k e. Prime
11 10 8 4 cif
 |-  if ( k e. Prime , k , 1 )
12 7 11 3 cprod
 |-  prod_ k e. ( 1 ... n ) if ( k e. Prime , k , 1 )
13 1 2 12 cmpt
 |-  ( n e. NN0 |-> prod_ k e. ( 1 ... n ) if ( k e. Prime , k , 1 ) )
14 0 13 wceq
 |-  #p = ( n e. NN0 |-> prod_ k e. ( 1 ... n ) if ( k e. Prime , k , 1 ) )