Database
BASIC ORDER THEORY
Posets, directed sets, and lattices as relations
Posets and lattices as relations
df-ps
Metamath Proof Explorer
Definition df-ps
Description: Define the class of all posets (partially ordered sets) with weak ordering
(e.g., "less than or equal to" instead of "less than"). A poset is a
relation which is transitive, reflexive, and antisymmetric. (Contributed by NM , 11-May-2008)
Ref
Expression
Assertion
df-ps
|- PosetRel = { r | ( Rel r /\ ( r o. r ) C_ r /\ ( r i^i `' r ) = ( _I |` U. U. r ) ) }
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cps
|- PosetRel
1
vr
|- r
2
1
cv
|- r
3
2
wrel
|- Rel r
4
2 2
ccom
|- ( r o. r )
5
4 2
wss
|- ( r o. r ) C_ r
6
2
ccnv
|- `' r
7
2 6
cin
|- ( r i^i `' r )
8
cid
|- _I
9
2
cuni
|- U. r
10
9
cuni
|- U. U. r
11
8 10
cres
|- ( _I |` U. U. r )
12
7 11
wceq
|- ( r i^i `' r ) = ( _I |` U. U. r )
13
3 5 12
w3a
|- ( Rel r /\ ( r o. r ) C_ r /\ ( r i^i `' r ) = ( _I |` U. U. r ) )
14
13 1
cab
|- { r | ( Rel r /\ ( r o. r ) C_ r /\ ( r i^i `' r ) = ( _I |` U. U. r ) ) }
15
0 14
wceq
|- PosetRel = { r | ( Rel r /\ ( r o. r ) C_ r /\ ( r i^i `' r ) = ( _I |` U. U. r ) ) }