Step |
Hyp |
Ref |
Expression |
0 |
|
cmps |
|- mPwSer |
1 |
|
vi |
|- i |
2 |
|
cvv |
|- _V |
3 |
|
vr |
|- r |
4 |
|
vh |
|- h |
5 |
|
cn0 |
|- NN0 |
6 |
|
cmap |
|- ^m |
7 |
1
|
cv |
|- i |
8 |
5 7 6
|
co |
|- ( NN0 ^m i ) |
9 |
4
|
cv |
|- h |
10 |
9
|
ccnv |
|- `' h |
11 |
|
cn |
|- NN |
12 |
10 11
|
cima |
|- ( `' h " NN ) |
13 |
|
cfn |
|- Fin |
14 |
12 13
|
wcel |
|- ( `' h " NN ) e. Fin |
15 |
14 4 8
|
crab |
|- { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } |
16 |
|
vd |
|- d |
17 |
|
cbs |
|- Base |
18 |
3
|
cv |
|- r |
19 |
18 17
|
cfv |
|- ( Base ` r ) |
20 |
16
|
cv |
|- d |
21 |
19 20 6
|
co |
|- ( ( Base ` r ) ^m d ) |
22 |
|
vb |
|- b |
23 |
|
cnx |
|- ndx |
24 |
23 17
|
cfv |
|- ( Base ` ndx ) |
25 |
22
|
cv |
|- b |
26 |
24 25
|
cop |
|- <. ( Base ` ndx ) , b >. |
27 |
|
cplusg |
|- +g |
28 |
23 27
|
cfv |
|- ( +g ` ndx ) |
29 |
18 27
|
cfv |
|- ( +g ` r ) |
30 |
29
|
cof |
|- oF ( +g ` r ) |
31 |
25 25
|
cxp |
|- ( b X. b ) |
32 |
30 31
|
cres |
|- ( oF ( +g ` r ) |` ( b X. b ) ) |
33 |
28 32
|
cop |
|- <. ( +g ` ndx ) , ( oF ( +g ` r ) |` ( b X. b ) ) >. |
34 |
|
cmulr |
|- .r |
35 |
23 34
|
cfv |
|- ( .r ` ndx ) |
36 |
|
vf |
|- f |
37 |
|
vg |
|- g |
38 |
|
vk |
|- k |
39 |
|
cgsu |
|- gsum |
40 |
|
vx |
|- x |
41 |
|
vy |
|- y |
42 |
41
|
cv |
|- y |
43 |
|
cle |
|- <_ |
44 |
43
|
cofr |
|- oR <_ |
45 |
38
|
cv |
|- k |
46 |
42 45 44
|
wbr |
|- y oR <_ k |
47 |
46 41 20
|
crab |
|- { y e. d | y oR <_ k } |
48 |
36
|
cv |
|- f |
49 |
40
|
cv |
|- x |
50 |
49 48
|
cfv |
|- ( f ` x ) |
51 |
18 34
|
cfv |
|- ( .r ` r ) |
52 |
37
|
cv |
|- g |
53 |
|
cmin |
|- - |
54 |
53
|
cof |
|- oF - |
55 |
45 49 54
|
co |
|- ( k oF - x ) |
56 |
55 52
|
cfv |
|- ( g ` ( k oF - x ) ) |
57 |
50 56 51
|
co |
|- ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) |
58 |
40 47 57
|
cmpt |
|- ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) |
59 |
18 58 39
|
co |
|- ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) |
60 |
38 20 59
|
cmpt |
|- ( k e. d |-> ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) ) |
61 |
36 37 25 25 60
|
cmpo |
|- ( f e. b , g e. b |-> ( k e. d |-> ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) ) ) |
62 |
35 61
|
cop |
|- <. ( .r ` ndx ) , ( f e. b , g e. b |-> ( k e. d |-> ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) ) ) >. |
63 |
26 33 62
|
ctp |
|- { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( oF ( +g ` r ) |` ( b X. b ) ) >. , <. ( .r ` ndx ) , ( f e. b , g e. b |-> ( k e. d |-> ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) ) ) >. } |
64 |
|
csca |
|- Scalar |
65 |
23 64
|
cfv |
|- ( Scalar ` ndx ) |
66 |
65 18
|
cop |
|- <. ( Scalar ` ndx ) , r >. |
67 |
|
cvsca |
|- .s |
68 |
23 67
|
cfv |
|- ( .s ` ndx ) |
69 |
49
|
csn |
|- { x } |
70 |
20 69
|
cxp |
|- ( d X. { x } ) |
71 |
51
|
cof |
|- oF ( .r ` r ) |
72 |
70 48 71
|
co |
|- ( ( d X. { x } ) oF ( .r ` r ) f ) |
73 |
40 36 19 25 72
|
cmpo |
|- ( x e. ( Base ` r ) , f e. b |-> ( ( d X. { x } ) oF ( .r ` r ) f ) ) |
74 |
68 73
|
cop |
|- <. ( .s ` ndx ) , ( x e. ( Base ` r ) , f e. b |-> ( ( d X. { x } ) oF ( .r ` r ) f ) ) >. |
75 |
|
cts |
|- TopSet |
76 |
23 75
|
cfv |
|- ( TopSet ` ndx ) |
77 |
|
cpt |
|- Xt_ |
78 |
|
ctopn |
|- TopOpen |
79 |
18 78
|
cfv |
|- ( TopOpen ` r ) |
80 |
79
|
csn |
|- { ( TopOpen ` r ) } |
81 |
20 80
|
cxp |
|- ( d X. { ( TopOpen ` r ) } ) |
82 |
81 77
|
cfv |
|- ( Xt_ ` ( d X. { ( TopOpen ` r ) } ) ) |
83 |
76 82
|
cop |
|- <. ( TopSet ` ndx ) , ( Xt_ ` ( d X. { ( TopOpen ` r ) } ) ) >. |
84 |
66 74 83
|
ctp |
|- { <. ( Scalar ` ndx ) , r >. , <. ( .s ` ndx ) , ( x e. ( Base ` r ) , f e. b |-> ( ( d X. { x } ) oF ( .r ` r ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( d X. { ( TopOpen ` r ) } ) ) >. } |
85 |
63 84
|
cun |
|- ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( oF ( +g ` r ) |` ( b X. b ) ) >. , <. ( .r ` ndx ) , ( f e. b , g e. b |-> ( k e. d |-> ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , r >. , <. ( .s ` ndx ) , ( x e. ( Base ` r ) , f e. b |-> ( ( d X. { x } ) oF ( .r ` r ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( d X. { ( TopOpen ` r ) } ) ) >. } ) |
86 |
22 21 85
|
csb |
|- [_ ( ( Base ` r ) ^m d ) / b ]_ ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( oF ( +g ` r ) |` ( b X. b ) ) >. , <. ( .r ` ndx ) , ( f e. b , g e. b |-> ( k e. d |-> ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , r >. , <. ( .s ` ndx ) , ( x e. ( Base ` r ) , f e. b |-> ( ( d X. { x } ) oF ( .r ` r ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( d X. { ( TopOpen ` r ) } ) ) >. } ) |
87 |
16 15 86
|
csb |
|- [_ { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } / d ]_ [_ ( ( Base ` r ) ^m d ) / b ]_ ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( oF ( +g ` r ) |` ( b X. b ) ) >. , <. ( .r ` ndx ) , ( f e. b , g e. b |-> ( k e. d |-> ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , r >. , <. ( .s ` ndx ) , ( x e. ( Base ` r ) , f e. b |-> ( ( d X. { x } ) oF ( .r ` r ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( d X. { ( TopOpen ` r ) } ) ) >. } ) |
88 |
1 3 2 2 87
|
cmpo |
|- ( i e. _V , r e. _V |-> [_ { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } / d ]_ [_ ( ( Base ` r ) ^m d ) / b ]_ ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( oF ( +g ` r ) |` ( b X. b ) ) >. , <. ( .r ` ndx ) , ( f e. b , g e. b |-> ( k e. d |-> ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , r >. , <. ( .s ` ndx ) , ( x e. ( Base ` r ) , f e. b |-> ( ( d X. { x } ) oF ( .r ` r ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( d X. { ( TopOpen ` r ) } ) ) >. } ) ) |
89 |
0 88
|
wceq |
|- mPwSer = ( i e. _V , r e. _V |-> [_ { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } / d ]_ [_ ( ( Base ` r ) ^m d ) / b ]_ ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( oF ( +g ` r ) |` ( b X. b ) ) >. , <. ( .r ` ndx ) , ( f e. b , g e. b |-> ( k e. d |-> ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , r >. , <. ( .s ` ndx ) , ( x e. ( Base ` r ) , f e. b |-> ( ( d X. { x } ) oF ( .r ` r ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( d X. { ( TopOpen ` r ) } ) ) >. } ) ) |