| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cmps |
|- mPwSer |
| 1 |
|
vi |
|- i |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vr |
|- r |
| 4 |
|
vh |
|- h |
| 5 |
|
cn0 |
|- NN0 |
| 6 |
|
cmap |
|- ^m |
| 7 |
1
|
cv |
|- i |
| 8 |
5 7 6
|
co |
|- ( NN0 ^m i ) |
| 9 |
4
|
cv |
|- h |
| 10 |
9
|
ccnv |
|- `' h |
| 11 |
|
cn |
|- NN |
| 12 |
10 11
|
cima |
|- ( `' h " NN ) |
| 13 |
|
cfn |
|- Fin |
| 14 |
12 13
|
wcel |
|- ( `' h " NN ) e. Fin |
| 15 |
14 4 8
|
crab |
|- { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } |
| 16 |
|
vd |
|- d |
| 17 |
|
cbs |
|- Base |
| 18 |
3
|
cv |
|- r |
| 19 |
18 17
|
cfv |
|- ( Base ` r ) |
| 20 |
16
|
cv |
|- d |
| 21 |
19 20 6
|
co |
|- ( ( Base ` r ) ^m d ) |
| 22 |
|
vb |
|- b |
| 23 |
|
cnx |
|- ndx |
| 24 |
23 17
|
cfv |
|- ( Base ` ndx ) |
| 25 |
22
|
cv |
|- b |
| 26 |
24 25
|
cop |
|- <. ( Base ` ndx ) , b >. |
| 27 |
|
cplusg |
|- +g |
| 28 |
23 27
|
cfv |
|- ( +g ` ndx ) |
| 29 |
18 27
|
cfv |
|- ( +g ` r ) |
| 30 |
29
|
cof |
|- oF ( +g ` r ) |
| 31 |
25 25
|
cxp |
|- ( b X. b ) |
| 32 |
30 31
|
cres |
|- ( oF ( +g ` r ) |` ( b X. b ) ) |
| 33 |
28 32
|
cop |
|- <. ( +g ` ndx ) , ( oF ( +g ` r ) |` ( b X. b ) ) >. |
| 34 |
|
cmulr |
|- .r |
| 35 |
23 34
|
cfv |
|- ( .r ` ndx ) |
| 36 |
|
vf |
|- f |
| 37 |
|
vg |
|- g |
| 38 |
|
vk |
|- k |
| 39 |
|
cgsu |
|- gsum |
| 40 |
|
vx |
|- x |
| 41 |
|
vy |
|- y |
| 42 |
41
|
cv |
|- y |
| 43 |
|
cle |
|- <_ |
| 44 |
43
|
cofr |
|- oR <_ |
| 45 |
38
|
cv |
|- k |
| 46 |
42 45 44
|
wbr |
|- y oR <_ k |
| 47 |
46 41 20
|
crab |
|- { y e. d | y oR <_ k } |
| 48 |
36
|
cv |
|- f |
| 49 |
40
|
cv |
|- x |
| 50 |
49 48
|
cfv |
|- ( f ` x ) |
| 51 |
18 34
|
cfv |
|- ( .r ` r ) |
| 52 |
37
|
cv |
|- g |
| 53 |
|
cmin |
|- - |
| 54 |
53
|
cof |
|- oF - |
| 55 |
45 49 54
|
co |
|- ( k oF - x ) |
| 56 |
55 52
|
cfv |
|- ( g ` ( k oF - x ) ) |
| 57 |
50 56 51
|
co |
|- ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) |
| 58 |
40 47 57
|
cmpt |
|- ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) |
| 59 |
18 58 39
|
co |
|- ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) |
| 60 |
38 20 59
|
cmpt |
|- ( k e. d |-> ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) ) |
| 61 |
36 37 25 25 60
|
cmpo |
|- ( f e. b , g e. b |-> ( k e. d |-> ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) ) ) |
| 62 |
35 61
|
cop |
|- <. ( .r ` ndx ) , ( f e. b , g e. b |-> ( k e. d |-> ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) ) ) >. |
| 63 |
26 33 62
|
ctp |
|- { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( oF ( +g ` r ) |` ( b X. b ) ) >. , <. ( .r ` ndx ) , ( f e. b , g e. b |-> ( k e. d |-> ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) ) ) >. } |
| 64 |
|
csca |
|- Scalar |
| 65 |
23 64
|
cfv |
|- ( Scalar ` ndx ) |
| 66 |
65 18
|
cop |
|- <. ( Scalar ` ndx ) , r >. |
| 67 |
|
cvsca |
|- .s |
| 68 |
23 67
|
cfv |
|- ( .s ` ndx ) |
| 69 |
49
|
csn |
|- { x } |
| 70 |
20 69
|
cxp |
|- ( d X. { x } ) |
| 71 |
51
|
cof |
|- oF ( .r ` r ) |
| 72 |
70 48 71
|
co |
|- ( ( d X. { x } ) oF ( .r ` r ) f ) |
| 73 |
40 36 19 25 72
|
cmpo |
|- ( x e. ( Base ` r ) , f e. b |-> ( ( d X. { x } ) oF ( .r ` r ) f ) ) |
| 74 |
68 73
|
cop |
|- <. ( .s ` ndx ) , ( x e. ( Base ` r ) , f e. b |-> ( ( d X. { x } ) oF ( .r ` r ) f ) ) >. |
| 75 |
|
cts |
|- TopSet |
| 76 |
23 75
|
cfv |
|- ( TopSet ` ndx ) |
| 77 |
|
cpt |
|- Xt_ |
| 78 |
|
ctopn |
|- TopOpen |
| 79 |
18 78
|
cfv |
|- ( TopOpen ` r ) |
| 80 |
79
|
csn |
|- { ( TopOpen ` r ) } |
| 81 |
20 80
|
cxp |
|- ( d X. { ( TopOpen ` r ) } ) |
| 82 |
81 77
|
cfv |
|- ( Xt_ ` ( d X. { ( TopOpen ` r ) } ) ) |
| 83 |
76 82
|
cop |
|- <. ( TopSet ` ndx ) , ( Xt_ ` ( d X. { ( TopOpen ` r ) } ) ) >. |
| 84 |
66 74 83
|
ctp |
|- { <. ( Scalar ` ndx ) , r >. , <. ( .s ` ndx ) , ( x e. ( Base ` r ) , f e. b |-> ( ( d X. { x } ) oF ( .r ` r ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( d X. { ( TopOpen ` r ) } ) ) >. } |
| 85 |
63 84
|
cun |
|- ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( oF ( +g ` r ) |` ( b X. b ) ) >. , <. ( .r ` ndx ) , ( f e. b , g e. b |-> ( k e. d |-> ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , r >. , <. ( .s ` ndx ) , ( x e. ( Base ` r ) , f e. b |-> ( ( d X. { x } ) oF ( .r ` r ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( d X. { ( TopOpen ` r ) } ) ) >. } ) |
| 86 |
22 21 85
|
csb |
|- [_ ( ( Base ` r ) ^m d ) / b ]_ ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( oF ( +g ` r ) |` ( b X. b ) ) >. , <. ( .r ` ndx ) , ( f e. b , g e. b |-> ( k e. d |-> ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , r >. , <. ( .s ` ndx ) , ( x e. ( Base ` r ) , f e. b |-> ( ( d X. { x } ) oF ( .r ` r ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( d X. { ( TopOpen ` r ) } ) ) >. } ) |
| 87 |
16 15 86
|
csb |
|- [_ { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } / d ]_ [_ ( ( Base ` r ) ^m d ) / b ]_ ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( oF ( +g ` r ) |` ( b X. b ) ) >. , <. ( .r ` ndx ) , ( f e. b , g e. b |-> ( k e. d |-> ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , r >. , <. ( .s ` ndx ) , ( x e. ( Base ` r ) , f e. b |-> ( ( d X. { x } ) oF ( .r ` r ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( d X. { ( TopOpen ` r ) } ) ) >. } ) |
| 88 |
1 3 2 2 87
|
cmpo |
|- ( i e. _V , r e. _V |-> [_ { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } / d ]_ [_ ( ( Base ` r ) ^m d ) / b ]_ ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( oF ( +g ` r ) |` ( b X. b ) ) >. , <. ( .r ` ndx ) , ( f e. b , g e. b |-> ( k e. d |-> ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , r >. , <. ( .s ` ndx ) , ( x e. ( Base ` r ) , f e. b |-> ( ( d X. { x } ) oF ( .r ` r ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( d X. { ( TopOpen ` r ) } ) ) >. } ) ) |
| 89 |
0 88
|
wceq |
|- mPwSer = ( i e. _V , r e. _V |-> [_ { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } / d ]_ [_ ( ( Base ` r ) ^m d ) / b ]_ ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( oF ( +g ` r ) |` ( b X. b ) ) >. , <. ( .r ` ndx ) , ( f e. b , g e. b |-> ( k e. d |-> ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , r >. , <. ( .s ` ndx ) , ( x e. ( Base ` r ) , f e. b |-> ( ( d X. { x } ) oF ( .r ` r ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( d X. { ( TopOpen ` r ) } ) ) >. } ) ) |