| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cpsubsp |  |-  PSubSp | 
						
							| 1 |  | vk |  |-  k | 
						
							| 2 |  | cvv |  |-  _V | 
						
							| 3 |  | vs |  |-  s | 
						
							| 4 | 3 | cv |  |-  s | 
						
							| 5 |  | catm |  |-  Atoms | 
						
							| 6 | 1 | cv |  |-  k | 
						
							| 7 | 6 5 | cfv |  |-  ( Atoms ` k ) | 
						
							| 8 | 4 7 | wss |  |-  s C_ ( Atoms ` k ) | 
						
							| 9 |  | vp |  |-  p | 
						
							| 10 |  | vq |  |-  q | 
						
							| 11 |  | vr |  |-  r | 
						
							| 12 | 11 | cv |  |-  r | 
						
							| 13 |  | cple |  |-  le | 
						
							| 14 | 6 13 | cfv |  |-  ( le ` k ) | 
						
							| 15 | 9 | cv |  |-  p | 
						
							| 16 |  | cjn |  |-  join | 
						
							| 17 | 6 16 | cfv |  |-  ( join ` k ) | 
						
							| 18 | 10 | cv |  |-  q | 
						
							| 19 | 15 18 17 | co |  |-  ( p ( join ` k ) q ) | 
						
							| 20 | 12 19 14 | wbr |  |-  r ( le ` k ) ( p ( join ` k ) q ) | 
						
							| 21 | 12 4 | wcel |  |-  r e. s | 
						
							| 22 | 20 21 | wi |  |-  ( r ( le ` k ) ( p ( join ` k ) q ) -> r e. s ) | 
						
							| 23 | 22 11 7 | wral |  |-  A. r e. ( Atoms ` k ) ( r ( le ` k ) ( p ( join ` k ) q ) -> r e. s ) | 
						
							| 24 | 23 10 4 | wral |  |-  A. q e. s A. r e. ( Atoms ` k ) ( r ( le ` k ) ( p ( join ` k ) q ) -> r e. s ) | 
						
							| 25 | 24 9 4 | wral |  |-  A. p e. s A. q e. s A. r e. ( Atoms ` k ) ( r ( le ` k ) ( p ( join ` k ) q ) -> r e. s ) | 
						
							| 26 | 8 25 | wa |  |-  ( s C_ ( Atoms ` k ) /\ A. p e. s A. q e. s A. r e. ( Atoms ` k ) ( r ( le ` k ) ( p ( join ` k ) q ) -> r e. s ) ) | 
						
							| 27 | 26 3 | cab |  |-  { s | ( s C_ ( Atoms ` k ) /\ A. p e. s A. q e. s A. r e. ( Atoms ` k ) ( r ( le ` k ) ( p ( join ` k ) q ) -> r e. s ) ) } | 
						
							| 28 | 1 2 27 | cmpt |  |-  ( k e. _V |-> { s | ( s C_ ( Atoms ` k ) /\ A. p e. s A. q e. s A. r e. ( Atoms ` k ) ( r ( le ` k ) ( p ( join ` k ) q ) -> r e. s ) ) } ) | 
						
							| 29 | 0 28 | wceq |  |-  PSubSp = ( k e. _V |-> { s | ( s C_ ( Atoms ` k ) /\ A. p e. s A. q e. s A. r e. ( Atoms ` k ) ( r ( le ` k ) ( p ( join ` k ) q ) -> r e. s ) ) } ) |