Description: Define a structure power, which is just a structure product where all the factors are the same. (Contributed by Mario Carneiro, 11-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | df-pws | |- ^s = ( r e. _V , i e. _V |-> ( ( Scalar ` r ) Xs_ ( i X. { r } ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cpws | |- ^s |
|
1 | vr | |- r |
|
2 | cvv | |- _V |
|
3 | vi | |- i |
|
4 | csca | |- Scalar |
|
5 | 1 | cv | |- r |
6 | 5 4 | cfv | |- ( Scalar ` r ) |
7 | cprds | |- Xs_ |
|
8 | 3 | cv | |- i |
9 | 5 | csn | |- { r } |
10 | 8 9 | cxp | |- ( i X. { r } ) |
11 | 6 10 7 | co | |- ( ( Scalar ` r ) Xs_ ( i X. { r } ) ) |
12 | 1 3 2 2 11 | cmpo | |- ( r e. _V , i e. _V |-> ( ( Scalar ` r ) Xs_ ( i X. { r } ) ) ) |
13 | 0 12 | wceq | |- ^s = ( r e. _V , i e. _V |-> ( ( Scalar ` r ) Xs_ ( i X. { r } ) ) ) |