Metamath Proof Explorer


Definition df-pws

Description: Define a structure power, which is just a structure product where all the factors are the same. (Contributed by Mario Carneiro, 11-Jan-2015)

Ref Expression
Assertion df-pws
|- ^s = ( r e. _V , i e. _V |-> ( ( Scalar ` r ) Xs_ ( i X. { r } ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cpws
 |-  ^s
1 vr
 |-  r
2 cvv
 |-  _V
3 vi
 |-  i
4 csca
 |-  Scalar
5 1 cv
 |-  r
6 5 4 cfv
 |-  ( Scalar ` r )
7 cprds
 |-  Xs_
8 3 cv
 |-  i
9 5 csn
 |-  { r }
10 8 9 cxp
 |-  ( i X. { r } )
11 6 10 7 co
 |-  ( ( Scalar ` r ) Xs_ ( i X. { r } ) )
12 1 3 2 2 11 cmpo
 |-  ( r e. _V , i e. _V |-> ( ( Scalar ` r ) Xs_ ( i X. { r } ) ) )
13 0 12 wceq
 |-  ^s = ( r e. _V , i e. _V |-> ( ( Scalar ` r ) Xs_ ( i X. { r } ) ) )