Description: Define quotient set. R is usually an equivalence relation. Definition of Enderton p. 58. (Contributed by NM, 23-Jul-1995)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-qs | |- ( A /. R ) = { y | E. x e. A y = [ x ] R } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cA | |- A |
|
| 1 | cR | |- R |
|
| 2 | 0 1 | cqs | |- ( A /. R ) |
| 3 | vy | |- y |
|
| 4 | vx | |- x |
|
| 5 | 3 | cv | |- y |
| 6 | 4 | cv | |- x |
| 7 | 6 1 | cec | |- [ x ] R |
| 8 | 5 7 | wceq | |- y = [ x ] R |
| 9 | 8 4 0 | wrex | |- E. x e. A y = [ x ] R |
| 10 | 9 3 | cab | |- { y | E. x e. A y = [ x ] R } |
| 11 | 2 10 | wceq | |- ( A /. R ) = { y | E. x e. A y = [ x ] R } |