Metamath Proof Explorer


Definition df-qtop

Description: Define the quotient topology given a function f and topology j on the domain of f . (Contributed by Mario Carneiro, 23-Mar-2015)

Ref Expression
Assertion df-qtop
|- qTop = ( j e. _V , f e. _V |-> { s e. ~P ( f " U. j ) | ( ( `' f " s ) i^i U. j ) e. j } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cqtop
 |-  qTop
1 vj
 |-  j
2 cvv
 |-  _V
3 vf
 |-  f
4 vs
 |-  s
5 3 cv
 |-  f
6 1 cv
 |-  j
7 6 cuni
 |-  U. j
8 5 7 cima
 |-  ( f " U. j )
9 8 cpw
 |-  ~P ( f " U. j )
10 5 ccnv
 |-  `' f
11 4 cv
 |-  s
12 10 11 cima
 |-  ( `' f " s )
13 12 7 cin
 |-  ( ( `' f " s ) i^i U. j )
14 13 6 wcel
 |-  ( ( `' f " s ) i^i U. j ) e. j
15 14 4 9 crab
 |-  { s e. ~P ( f " U. j ) | ( ( `' f " s ) i^i U. j ) e. j }
16 1 3 2 2 15 cmpo
 |-  ( j e. _V , f e. _V |-> { s e. ~P ( f " U. j ) | ( ( `' f " s ) i^i U. j ) e. j } )
17 0 16 wceq
 |-  qTop = ( j e. _V , f e. _V |-> { s e. ~P ( f " U. j ) | ( ( `' f " s ) i^i U. j ) e. j } )