| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cquot |  |-  quot | 
						
							| 1 |  | vf |  |-  f | 
						
							| 2 |  | cply |  |-  Poly | 
						
							| 3 |  | cc |  |-  CC | 
						
							| 4 | 3 2 | cfv |  |-  ( Poly ` CC ) | 
						
							| 5 |  | vg |  |-  g | 
						
							| 6 |  | c0p |  |-  0p | 
						
							| 7 | 6 | csn |  |-  { 0p } | 
						
							| 8 | 4 7 | cdif |  |-  ( ( Poly ` CC ) \ { 0p } ) | 
						
							| 9 |  | vq |  |-  q | 
						
							| 10 | 1 | cv |  |-  f | 
						
							| 11 |  | cmin |  |-  - | 
						
							| 12 | 11 | cof |  |-  oF - | 
						
							| 13 | 5 | cv |  |-  g | 
						
							| 14 |  | cmul |  |-  x. | 
						
							| 15 | 14 | cof |  |-  oF x. | 
						
							| 16 | 9 | cv |  |-  q | 
						
							| 17 | 13 16 15 | co |  |-  ( g oF x. q ) | 
						
							| 18 | 10 17 12 | co |  |-  ( f oF - ( g oF x. q ) ) | 
						
							| 19 |  | vr |  |-  r | 
						
							| 20 | 19 | cv |  |-  r | 
						
							| 21 | 20 6 | wceq |  |-  r = 0p | 
						
							| 22 |  | cdgr |  |-  deg | 
						
							| 23 | 20 22 | cfv |  |-  ( deg ` r ) | 
						
							| 24 |  | clt |  |-  < | 
						
							| 25 | 13 22 | cfv |  |-  ( deg ` g ) | 
						
							| 26 | 23 25 24 | wbr |  |-  ( deg ` r ) < ( deg ` g ) | 
						
							| 27 | 21 26 | wo |  |-  ( r = 0p \/ ( deg ` r ) < ( deg ` g ) ) | 
						
							| 28 | 27 19 18 | wsbc |  |-  [. ( f oF - ( g oF x. q ) ) / r ]. ( r = 0p \/ ( deg ` r ) < ( deg ` g ) ) | 
						
							| 29 | 28 9 4 | crio |  |-  ( iota_ q e. ( Poly ` CC ) [. ( f oF - ( g oF x. q ) ) / r ]. ( r = 0p \/ ( deg ` r ) < ( deg ` g ) ) ) | 
						
							| 30 | 1 5 4 8 29 | cmpo |  |-  ( f e. ( Poly ` CC ) , g e. ( ( Poly ` CC ) \ { 0p } ) |-> ( iota_ q e. ( Poly ` CC ) [. ( f oF - ( g oF x. q ) ) / r ]. ( r = 0p \/ ( deg ` r ) < ( deg ` g ) ) ) ) | 
						
							| 31 | 0 30 | wceq |  |-  quot = ( f e. ( Poly ` CC ) , g e. ( ( Poly ` CC ) \ { 0p } ) |-> ( iota_ q e. ( Poly ` CC ) [. ( f oF - ( g oF x. q ) ) / r ]. ( r = 0p \/ ( deg ` r ) < ( deg ` g ) ) ) ) |