Metamath Proof Explorer


Definition df-reg

Description: Define regular spaces. A space is regular if a point and a closed set can be separated by neighborhoods. (Contributed by Jeff Hankins, 1-Feb-2010)

Ref Expression
Assertion df-reg
|- Reg = { j e. Top | A. x e. j A. y e. x E. z e. j ( y e. z /\ ( ( cls ` j ) ` z ) C_ x ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 creg
 |-  Reg
1 vj
 |-  j
2 ctop
 |-  Top
3 vx
 |-  x
4 1 cv
 |-  j
5 vy
 |-  y
6 3 cv
 |-  x
7 vz
 |-  z
8 5 cv
 |-  y
9 7 cv
 |-  z
10 8 9 wcel
 |-  y e. z
11 ccl
 |-  cls
12 4 11 cfv
 |-  ( cls ` j )
13 9 12 cfv
 |-  ( ( cls ` j ) ` z )
14 13 6 wss
 |-  ( ( cls ` j ) ` z ) C_ x
15 10 14 wa
 |-  ( y e. z /\ ( ( cls ` j ) ` z ) C_ x )
16 15 7 4 wrex
 |-  E. z e. j ( y e. z /\ ( ( cls ` j ) ` z ) C_ x )
17 16 5 6 wral
 |-  A. y e. x E. z e. j ( y e. z /\ ( ( cls ` j ) ` z ) C_ x )
18 17 3 4 wral
 |-  A. x e. j A. y e. x E. z e. j ( y e. z /\ ( ( cls ` j ) ` z ) C_ x )
19 18 1 2 crab
 |-  { j e. Top | A. x e. j A. y e. x E. z e. j ( y e. z /\ ( ( cls ` j ) ` z ) C_ x ) }
20 0 19 wceq
 |-  Reg = { j e. Top | A. x e. j A. y e. x E. z e. j ( y e. z /\ ( ( cls ` j ) ` z ) C_ x ) }