Step |
Hyp |
Ref |
Expression |
0 |
|
crepr |
|- repr |
1 |
|
vs |
|- s |
2 |
|
cn0 |
|- NN0 |
3 |
|
vb |
|- b |
4 |
|
cn |
|- NN |
5 |
4
|
cpw |
|- ~P NN |
6 |
|
vm |
|- m |
7 |
|
cz |
|- ZZ |
8 |
|
vc |
|- c |
9 |
3
|
cv |
|- b |
10 |
|
cmap |
|- ^m |
11 |
|
cc0 |
|- 0 |
12 |
|
cfzo |
|- ..^ |
13 |
1
|
cv |
|- s |
14 |
11 13 12
|
co |
|- ( 0 ..^ s ) |
15 |
9 14 10
|
co |
|- ( b ^m ( 0 ..^ s ) ) |
16 |
|
va |
|- a |
17 |
8
|
cv |
|- c |
18 |
16
|
cv |
|- a |
19 |
18 17
|
cfv |
|- ( c ` a ) |
20 |
14 19 16
|
csu |
|- sum_ a e. ( 0 ..^ s ) ( c ` a ) |
21 |
6
|
cv |
|- m |
22 |
20 21
|
wceq |
|- sum_ a e. ( 0 ..^ s ) ( c ` a ) = m |
23 |
22 8 15
|
crab |
|- { c e. ( b ^m ( 0 ..^ s ) ) | sum_ a e. ( 0 ..^ s ) ( c ` a ) = m } |
24 |
3 6 5 7 23
|
cmpo |
|- ( b e. ~P NN , m e. ZZ |-> { c e. ( b ^m ( 0 ..^ s ) ) | sum_ a e. ( 0 ..^ s ) ( c ` a ) = m } ) |
25 |
1 2 24
|
cmpt |
|- ( s e. NN0 |-> ( b e. ~P NN , m e. ZZ |-> { c e. ( b ^m ( 0 ..^ s ) ) | sum_ a e. ( 0 ..^ s ) ( c ` a ) = m } ) ) |
26 |
0 25
|
wceq |
|- repr = ( s e. NN0 |-> ( b e. ~P NN , m e. ZZ |-> { c e. ( b ^m ( 0 ..^ s ) ) | sum_ a e. ( 0 ..^ s ) ( c ` a ) = m } ) ) |