Metamath Proof Explorer


Definition df-repr

Description: The representations of a nonnegative m as the sum of s nonnegative integers from a set b . Cf. Definition of Nathanson p. 123. (Contributed by Thierry Arnoux, 1-Dec-2021)

Ref Expression
Assertion df-repr
|- repr = ( s e. NN0 |-> ( b e. ~P NN , m e. ZZ |-> { c e. ( b ^m ( 0 ..^ s ) ) | sum_ a e. ( 0 ..^ s ) ( c ` a ) = m } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 crepr
 |-  repr
1 vs
 |-  s
2 cn0
 |-  NN0
3 vb
 |-  b
4 cn
 |-  NN
5 4 cpw
 |-  ~P NN
6 vm
 |-  m
7 cz
 |-  ZZ
8 vc
 |-  c
9 3 cv
 |-  b
10 cmap
 |-  ^m
11 cc0
 |-  0
12 cfzo
 |-  ..^
13 1 cv
 |-  s
14 11 13 12 co
 |-  ( 0 ..^ s )
15 9 14 10 co
 |-  ( b ^m ( 0 ..^ s ) )
16 va
 |-  a
17 8 cv
 |-  c
18 16 cv
 |-  a
19 18 17 cfv
 |-  ( c ` a )
20 14 19 16 csu
 |-  sum_ a e. ( 0 ..^ s ) ( c ` a )
21 6 cv
 |-  m
22 20 21 wceq
 |-  sum_ a e. ( 0 ..^ s ) ( c ` a ) = m
23 22 8 15 crab
 |-  { c e. ( b ^m ( 0 ..^ s ) ) | sum_ a e. ( 0 ..^ s ) ( c ` a ) = m }
24 3 6 5 7 23 cmpo
 |-  ( b e. ~P NN , m e. ZZ |-> { c e. ( b ^m ( 0 ..^ s ) ) | sum_ a e. ( 0 ..^ s ) ( c ` a ) = m } )
25 1 2 24 cmpt
 |-  ( s e. NN0 |-> ( b e. ~P NN , m e. ZZ |-> { c e. ( b ^m ( 0 ..^ s ) ) | sum_ a e. ( 0 ..^ s ) ( c ` a ) = m } ) )
26 0 25 wceq
 |-  repr = ( s e. NN0 |-> ( b e. ~P NN , m e. ZZ |-> { c e. ( b ^m ( 0 ..^ s ) ) | sum_ a e. ( 0 ..^ s ) ( c ` a ) = m } ) )