Metamath Proof Explorer


Definition df-rest

Description: Function returning the subspace topology induced by the topology y and the set x . (Contributed by FL, 20-Sep-2010) (Revised by Mario Carneiro, 1-May-2015)

Ref Expression
Assertion df-rest
|- |`t = ( j e. _V , x e. _V |-> ran ( y e. j |-> ( y i^i x ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 crest
 |-  |`t
1 vj
 |-  j
2 cvv
 |-  _V
3 vx
 |-  x
4 vy
 |-  y
5 1 cv
 |-  j
6 4 cv
 |-  y
7 3 cv
 |-  x
8 6 7 cin
 |-  ( y i^i x )
9 4 5 8 cmpt
 |-  ( y e. j |-> ( y i^i x ) )
10 9 crn
 |-  ran ( y e. j |-> ( y i^i x ) )
11 1 3 2 2 10 cmpo
 |-  ( j e. _V , x e. _V |-> ran ( y e. j |-> ( y i^i x ) ) )
12 0 11 wceq
 |-  |`t = ( j e. _V , x e. _V |-> ran ( y e. j |-> ( y i^i x ) ) )