| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cresv |  |-  |`v | 
						
							| 1 |  | vw |  |-  w | 
						
							| 2 |  | cvv |  |-  _V | 
						
							| 3 |  | vx |  |-  x | 
						
							| 4 |  | cbs |  |-  Base | 
						
							| 5 |  | csca |  |-  Scalar | 
						
							| 6 | 1 | cv |  |-  w | 
						
							| 7 | 6 5 | cfv |  |-  ( Scalar ` w ) | 
						
							| 8 | 7 4 | cfv |  |-  ( Base ` ( Scalar ` w ) ) | 
						
							| 9 | 3 | cv |  |-  x | 
						
							| 10 | 8 9 | wss |  |-  ( Base ` ( Scalar ` w ) ) C_ x | 
						
							| 11 |  | csts |  |-  sSet | 
						
							| 12 |  | cnx |  |-  ndx | 
						
							| 13 | 12 5 | cfv |  |-  ( Scalar ` ndx ) | 
						
							| 14 |  | cress |  |-  |`s | 
						
							| 15 | 7 9 14 | co |  |-  ( ( Scalar ` w ) |`s x ) | 
						
							| 16 | 13 15 | cop |  |-  <. ( Scalar ` ndx ) , ( ( Scalar ` w ) |`s x ) >. | 
						
							| 17 | 6 16 11 | co |  |-  ( w sSet <. ( Scalar ` ndx ) , ( ( Scalar ` w ) |`s x ) >. ) | 
						
							| 18 | 10 6 17 | cif |  |-  if ( ( Base ` ( Scalar ` w ) ) C_ x , w , ( w sSet <. ( Scalar ` ndx ) , ( ( Scalar ` w ) |`s x ) >. ) ) | 
						
							| 19 | 1 3 2 2 18 | cmpo |  |-  ( w e. _V , x e. _V |-> if ( ( Base ` ( Scalar ` w ) ) C_ x , w , ( w sSet <. ( Scalar ` ndx ) , ( ( Scalar ` w ) |`s x ) >. ) ) ) | 
						
							| 20 | 0 19 | wceq |  |-  |`v = ( w e. _V , x e. _V |-> if ( ( Base ` ( Scalar ` w ) ) C_ x , w , ( w sSet <. ( Scalar ` ndx ) , ( ( Scalar ` w ) |`s x ) >. ) ) ) |