| Step | Hyp | Ref | Expression | 
						
							| 0 |  | crgr |  |-  RegGraph | 
						
							| 1 |  | vg |  |-  g | 
						
							| 2 |  | vk |  |-  k | 
						
							| 3 | 2 | cv |  |-  k | 
						
							| 4 |  | cxnn0 |  |-  NN0* | 
						
							| 5 | 3 4 | wcel |  |-  k e. NN0* | 
						
							| 6 |  | vv |  |-  v | 
						
							| 7 |  | cvtx |  |-  Vtx | 
						
							| 8 | 1 | cv |  |-  g | 
						
							| 9 | 8 7 | cfv |  |-  ( Vtx ` g ) | 
						
							| 10 |  | cvtxdg |  |-  VtxDeg | 
						
							| 11 | 8 10 | cfv |  |-  ( VtxDeg ` g ) | 
						
							| 12 | 6 | cv |  |-  v | 
						
							| 13 | 12 11 | cfv |  |-  ( ( VtxDeg ` g ) ` v ) | 
						
							| 14 | 13 3 | wceq |  |-  ( ( VtxDeg ` g ) ` v ) = k | 
						
							| 15 | 14 6 9 | wral |  |-  A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = k | 
						
							| 16 | 5 15 | wa |  |-  ( k e. NN0* /\ A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = k ) | 
						
							| 17 | 16 1 2 | copab |  |-  { <. g , k >. | ( k e. NN0* /\ A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = k ) } | 
						
							| 18 | 0 17 | wceq |  |-  RegGraph = { <. g , k >. | ( k e. NN0* /\ A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = k ) } |