| Step | Hyp | Ref | Expression | 
						
							| 0 |  | crh |  |-  RingHom | 
						
							| 1 |  | vr |  |-  r | 
						
							| 2 |  | crg |  |-  Ring | 
						
							| 3 |  | vs |  |-  s | 
						
							| 4 |  | cbs |  |-  Base | 
						
							| 5 | 1 | cv |  |-  r | 
						
							| 6 | 5 4 | cfv |  |-  ( Base ` r ) | 
						
							| 7 |  | vv |  |-  v | 
						
							| 8 | 3 | cv |  |-  s | 
						
							| 9 | 8 4 | cfv |  |-  ( Base ` s ) | 
						
							| 10 |  | vw |  |-  w | 
						
							| 11 |  | vf |  |-  f | 
						
							| 12 | 10 | cv |  |-  w | 
						
							| 13 |  | cmap |  |-  ^m | 
						
							| 14 | 7 | cv |  |-  v | 
						
							| 15 | 12 14 13 | co |  |-  ( w ^m v ) | 
						
							| 16 | 11 | cv |  |-  f | 
						
							| 17 |  | cur |  |-  1r | 
						
							| 18 | 5 17 | cfv |  |-  ( 1r ` r ) | 
						
							| 19 | 18 16 | cfv |  |-  ( f ` ( 1r ` r ) ) | 
						
							| 20 | 8 17 | cfv |  |-  ( 1r ` s ) | 
						
							| 21 | 19 20 | wceq |  |-  ( f ` ( 1r ` r ) ) = ( 1r ` s ) | 
						
							| 22 |  | vx |  |-  x | 
						
							| 23 |  | vy |  |-  y | 
						
							| 24 | 22 | cv |  |-  x | 
						
							| 25 |  | cplusg |  |-  +g | 
						
							| 26 | 5 25 | cfv |  |-  ( +g ` r ) | 
						
							| 27 | 23 | cv |  |-  y | 
						
							| 28 | 24 27 26 | co |  |-  ( x ( +g ` r ) y ) | 
						
							| 29 | 28 16 | cfv |  |-  ( f ` ( x ( +g ` r ) y ) ) | 
						
							| 30 | 24 16 | cfv |  |-  ( f ` x ) | 
						
							| 31 | 8 25 | cfv |  |-  ( +g ` s ) | 
						
							| 32 | 27 16 | cfv |  |-  ( f ` y ) | 
						
							| 33 | 30 32 31 | co |  |-  ( ( f ` x ) ( +g ` s ) ( f ` y ) ) | 
						
							| 34 | 29 33 | wceq |  |-  ( f ` ( x ( +g ` r ) y ) ) = ( ( f ` x ) ( +g ` s ) ( f ` y ) ) | 
						
							| 35 |  | cmulr |  |-  .r | 
						
							| 36 | 5 35 | cfv |  |-  ( .r ` r ) | 
						
							| 37 | 24 27 36 | co |  |-  ( x ( .r ` r ) y ) | 
						
							| 38 | 37 16 | cfv |  |-  ( f ` ( x ( .r ` r ) y ) ) | 
						
							| 39 | 8 35 | cfv |  |-  ( .r ` s ) | 
						
							| 40 | 30 32 39 | co |  |-  ( ( f ` x ) ( .r ` s ) ( f ` y ) ) | 
						
							| 41 | 38 40 | wceq |  |-  ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) ( .r ` s ) ( f ` y ) ) | 
						
							| 42 | 34 41 | wa |  |-  ( ( f ` ( x ( +g ` r ) y ) ) = ( ( f ` x ) ( +g ` s ) ( f ` y ) ) /\ ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) ( .r ` s ) ( f ` y ) ) ) | 
						
							| 43 | 42 23 14 | wral |  |-  A. y e. v ( ( f ` ( x ( +g ` r ) y ) ) = ( ( f ` x ) ( +g ` s ) ( f ` y ) ) /\ ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) ( .r ` s ) ( f ` y ) ) ) | 
						
							| 44 | 43 22 14 | wral |  |-  A. x e. v A. y e. v ( ( f ` ( x ( +g ` r ) y ) ) = ( ( f ` x ) ( +g ` s ) ( f ` y ) ) /\ ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) ( .r ` s ) ( f ` y ) ) ) | 
						
							| 45 | 21 44 | wa |  |-  ( ( f ` ( 1r ` r ) ) = ( 1r ` s ) /\ A. x e. v A. y e. v ( ( f ` ( x ( +g ` r ) y ) ) = ( ( f ` x ) ( +g ` s ) ( f ` y ) ) /\ ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) ( .r ` s ) ( f ` y ) ) ) ) | 
						
							| 46 | 45 11 15 | crab |  |-  { f e. ( w ^m v ) | ( ( f ` ( 1r ` r ) ) = ( 1r ` s ) /\ A. x e. v A. y e. v ( ( f ` ( x ( +g ` r ) y ) ) = ( ( f ` x ) ( +g ` s ) ( f ` y ) ) /\ ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) ( .r ` s ) ( f ` y ) ) ) ) } | 
						
							| 47 | 10 9 46 | csb |  |-  [_ ( Base ` s ) / w ]_ { f e. ( w ^m v ) | ( ( f ` ( 1r ` r ) ) = ( 1r ` s ) /\ A. x e. v A. y e. v ( ( f ` ( x ( +g ` r ) y ) ) = ( ( f ` x ) ( +g ` s ) ( f ` y ) ) /\ ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) ( .r ` s ) ( f ` y ) ) ) ) } | 
						
							| 48 | 7 6 47 | csb |  |-  [_ ( Base ` r ) / v ]_ [_ ( Base ` s ) / w ]_ { f e. ( w ^m v ) | ( ( f ` ( 1r ` r ) ) = ( 1r ` s ) /\ A. x e. v A. y e. v ( ( f ` ( x ( +g ` r ) y ) ) = ( ( f ` x ) ( +g ` s ) ( f ` y ) ) /\ ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) ( .r ` s ) ( f ` y ) ) ) ) } | 
						
							| 49 | 1 3 2 2 48 | cmpo |  |-  ( r e. Ring , s e. Ring |-> [_ ( Base ` r ) / v ]_ [_ ( Base ` s ) / w ]_ { f e. ( w ^m v ) | ( ( f ` ( 1r ` r ) ) = ( 1r ` s ) /\ A. x e. v A. y e. v ( ( f ` ( x ( +g ` r ) y ) ) = ( ( f ` x ) ( +g ` s ) ( f ` y ) ) /\ ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) ( .r ` s ) ( f ` y ) ) ) ) } ) | 
						
							| 50 | 0 49 | wceq |  |-  RingHom = ( r e. Ring , s e. Ring |-> [_ ( Base ` r ) / v ]_ [_ ( Base ` s ) / w ]_ { f e. ( w ^m v ) | ( ( f ` ( 1r ` r ) ) = ( 1r ` s ) /\ A. x e. v A. y e. v ( ( f ` ( x ( +g ` r ) y ) ) = ( ( f ` x ) ( +g ` s ) ( f ` y ) ) /\ ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) ( .r ` s ) ( f ` y ) ) ) ) } ) |