Description: Define the set of ring isomorphisms from r to s . (Contributed by Stefan O'Rear, 7-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-rim | |- RingIso = ( r e. _V , s e. _V |-> { f e. ( r RingHom s ) | `' f e. ( s RingHom r ) } ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 0 | crs | |- RingIso | |
| 1 | vr | |- r | |
| 2 | cvv | |- _V | |
| 3 | vs | |- s | |
| 4 | vf | |- f | |
| 5 | 1 | cv | |- r | 
| 6 | crh | |- RingHom | |
| 7 | 3 | cv | |- s | 
| 8 | 5 7 6 | co | |- ( r RingHom s ) | 
| 9 | 4 | cv | |- f | 
| 10 | 9 | ccnv | |- `' f | 
| 11 | 7 5 6 | co | |- ( s RingHom r ) | 
| 12 | 10 11 | wcel | |- `' f e. ( s RingHom r ) | 
| 13 | 12 4 8 | crab |  |-  { f e. ( r RingHom s ) | `' f e. ( s RingHom r ) } | 
| 14 | 1 3 2 2 13 | cmpo |  |-  ( r e. _V , s e. _V |-> { f e. ( r RingHom s ) | `' f e. ( s RingHom r ) } ) | 
| 15 | 0 14 | wceq |  |-  RingIso = ( r e. _V , s e. _V |-> { f e. ( r RingHom s ) | `' f e. ( s RingHom r ) } ) |