Metamath Proof Explorer


Definition df-riota

Description: Define restricted description binder. In case there is no unique x such that ( x e. A /\ ph ) holds, it evaluates to the empty set. See also comments for df-iota . (Contributed by NM, 15-Sep-2011) (Revised by Mario Carneiro, 15-Oct-2016) (Revised by NM, 2-Sep-2018)

Ref Expression
Assertion df-riota
|- ( iota_ x e. A ph ) = ( iota x ( x e. A /\ ph ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 vx
 |-  x
1 cA
 |-  A
2 wph
 |-  ph
3 2 0 1 crio
 |-  ( iota_ x e. A ph )
4 0 cv
 |-  x
5 4 1 wcel
 |-  x e. A
6 5 2 wa
 |-  ( x e. A /\ ph )
7 6 0 cio
 |-  ( iota x ( x e. A /\ ph ) )
8 3 7 wceq
 |-  ( iota_ x e. A ph ) = ( iota x ( x e. A /\ ph ) )