Step |
Hyp |
Ref |
Expression |
0 |
|
crloc |
|- RLocal |
1 |
|
vr |
|- r |
2 |
|
cvv |
|- _V |
3 |
|
vs |
|- s |
4 |
|
cmulr |
|- .r |
5 |
1
|
cv |
|- r |
6 |
5 4
|
cfv |
|- ( .r ` r ) |
7 |
|
vx |
|- x |
8 |
|
cbs |
|- Base |
9 |
5 8
|
cfv |
|- ( Base ` r ) |
10 |
3
|
cv |
|- s |
11 |
9 10
|
cxp |
|- ( ( Base ` r ) X. s ) |
12 |
|
vw |
|- w |
13 |
|
cnx |
|- ndx |
14 |
13 8
|
cfv |
|- ( Base ` ndx ) |
15 |
12
|
cv |
|- w |
16 |
14 15
|
cop |
|- <. ( Base ` ndx ) , w >. |
17 |
|
cplusg |
|- +g |
18 |
13 17
|
cfv |
|- ( +g ` ndx ) |
19 |
|
va |
|- a |
20 |
|
vb |
|- b |
21 |
|
c1st |
|- 1st |
22 |
19
|
cv |
|- a |
23 |
22 21
|
cfv |
|- ( 1st ` a ) |
24 |
7
|
cv |
|- x |
25 |
|
c2nd |
|- 2nd |
26 |
20
|
cv |
|- b |
27 |
26 25
|
cfv |
|- ( 2nd ` b ) |
28 |
23 27 24
|
co |
|- ( ( 1st ` a ) x ( 2nd ` b ) ) |
29 |
5 17
|
cfv |
|- ( +g ` r ) |
30 |
26 21
|
cfv |
|- ( 1st ` b ) |
31 |
22 25
|
cfv |
|- ( 2nd ` a ) |
32 |
30 31 24
|
co |
|- ( ( 1st ` b ) x ( 2nd ` a ) ) |
33 |
28 32 29
|
co |
|- ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( +g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) |
34 |
31 27 24
|
co |
|- ( ( 2nd ` a ) x ( 2nd ` b ) ) |
35 |
33 34
|
cop |
|- <. ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( +g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. |
36 |
19 20 15 15 35
|
cmpo |
|- ( a e. w , b e. w |-> <. ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( +g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) |
37 |
18 36
|
cop |
|- <. ( +g ` ndx ) , ( a e. w , b e. w |-> <. ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( +g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. |
38 |
13 4
|
cfv |
|- ( .r ` ndx ) |
39 |
23 30 24
|
co |
|- ( ( 1st ` a ) x ( 1st ` b ) ) |
40 |
39 34
|
cop |
|- <. ( ( 1st ` a ) x ( 1st ` b ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. |
41 |
19 20 15 15 40
|
cmpo |
|- ( a e. w , b e. w |-> <. ( ( 1st ` a ) x ( 1st ` b ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) |
42 |
38 41
|
cop |
|- <. ( .r ` ndx ) , ( a e. w , b e. w |-> <. ( ( 1st ` a ) x ( 1st ` b ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. |
43 |
16 37 42
|
ctp |
|- { <. ( Base ` ndx ) , w >. , <. ( +g ` ndx ) , ( a e. w , b e. w |-> <. ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( +g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. w , b e. w |-> <. ( ( 1st ` a ) x ( 1st ` b ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. } |
44 |
|
csca |
|- Scalar |
45 |
13 44
|
cfv |
|- ( Scalar ` ndx ) |
46 |
5 44
|
cfv |
|- ( Scalar ` r ) |
47 |
45 46
|
cop |
|- <. ( Scalar ` ndx ) , ( Scalar ` r ) >. |
48 |
|
cvsca |
|- .s |
49 |
13 48
|
cfv |
|- ( .s ` ndx ) |
50 |
|
vk |
|- k |
51 |
46 8
|
cfv |
|- ( Base ` ( Scalar ` r ) ) |
52 |
50
|
cv |
|- k |
53 |
5 48
|
cfv |
|- ( .s ` r ) |
54 |
52 23 53
|
co |
|- ( k ( .s ` r ) ( 1st ` a ) ) |
55 |
54 31
|
cop |
|- <. ( k ( .s ` r ) ( 1st ` a ) ) , ( 2nd ` a ) >. |
56 |
50 19 51 15 55
|
cmpo |
|- ( k e. ( Base ` ( Scalar ` r ) ) , a e. w |-> <. ( k ( .s ` r ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) |
57 |
49 56
|
cop |
|- <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` r ) ) , a e. w |-> <. ( k ( .s ` r ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. |
58 |
|
cip |
|- .i |
59 |
13 58
|
cfv |
|- ( .i ` ndx ) |
60 |
|
c0 |
|- (/) |
61 |
59 60
|
cop |
|- <. ( .i ` ndx ) , (/) >. |
62 |
47 57 61
|
ctp |
|- { <. ( Scalar ` ndx ) , ( Scalar ` r ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` r ) ) , a e. w |-> <. ( k ( .s ` r ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } |
63 |
43 62
|
cun |
|- ( { <. ( Base ` ndx ) , w >. , <. ( +g ` ndx ) , ( a e. w , b e. w |-> <. ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( +g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. w , b e. w |-> <. ( ( 1st ` a ) x ( 1st ` b ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` r ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` r ) ) , a e. w |-> <. ( k ( .s ` r ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) |
64 |
|
cts |
|- TopSet |
65 |
13 64
|
cfv |
|- ( TopSet ` ndx ) |
66 |
5 64
|
cfv |
|- ( TopSet ` r ) |
67 |
|
ctx |
|- tX |
68 |
|
crest |
|- |`t |
69 |
66 10 68
|
co |
|- ( ( TopSet ` r ) |`t s ) |
70 |
66 69 67
|
co |
|- ( ( TopSet ` r ) tX ( ( TopSet ` r ) |`t s ) ) |
71 |
65 70
|
cop |
|- <. ( TopSet ` ndx ) , ( ( TopSet ` r ) tX ( ( TopSet ` r ) |`t s ) ) >. |
72 |
|
cple |
|- le |
73 |
13 72
|
cfv |
|- ( le ` ndx ) |
74 |
22 15
|
wcel |
|- a e. w |
75 |
26 15
|
wcel |
|- b e. w |
76 |
74 75
|
wa |
|- ( a e. w /\ b e. w ) |
77 |
5 72
|
cfv |
|- ( le ` r ) |
78 |
28 32 77
|
wbr |
|- ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) |
79 |
76 78
|
wa |
|- ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) |
80 |
79 19 20
|
copab |
|- { <. a , b >. | ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) } |
81 |
73 80
|
cop |
|- <. ( le ` ndx ) , { <. a , b >. | ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) } >. |
82 |
|
cds |
|- dist |
83 |
13 82
|
cfv |
|- ( dist ` ndx ) |
84 |
5 82
|
cfv |
|- ( dist ` r ) |
85 |
28 32 84
|
co |
|- ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( dist ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) |
86 |
19 20 15 15 85
|
cmpo |
|- ( a e. w , b e. w |-> ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( dist ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) |
87 |
83 86
|
cop |
|- <. ( dist ` ndx ) , ( a e. w , b e. w |-> ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( dist ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) >. |
88 |
71 81 87
|
ctp |
|- { <. ( TopSet ` ndx ) , ( ( TopSet ` r ) tX ( ( TopSet ` r ) |`t s ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. w , b e. w |-> ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( dist ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) >. } |
89 |
63 88
|
cun |
|- ( ( { <. ( Base ` ndx ) , w >. , <. ( +g ` ndx ) , ( a e. w , b e. w |-> <. ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( +g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. w , b e. w |-> <. ( ( 1st ` a ) x ( 1st ` b ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` r ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` r ) ) , a e. w |-> <. ( k ( .s ` r ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` r ) tX ( ( TopSet ` r ) |`t s ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. w , b e. w |-> ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( dist ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) >. } ) |
90 |
|
cqus |
|- /s |
91 |
|
cerl |
|- ~RL |
92 |
5 10 91
|
co |
|- ( r ~RL s ) |
93 |
89 92 90
|
co |
|- ( ( ( { <. ( Base ` ndx ) , w >. , <. ( +g ` ndx ) , ( a e. w , b e. w |-> <. ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( +g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. w , b e. w |-> <. ( ( 1st ` a ) x ( 1st ` b ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` r ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` r ) ) , a e. w |-> <. ( k ( .s ` r ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` r ) tX ( ( TopSet ` r ) |`t s ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. w , b e. w |-> ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( dist ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) >. } ) /s ( r ~RL s ) ) |
94 |
12 11 93
|
csb |
|- [_ ( ( Base ` r ) X. s ) / w ]_ ( ( ( { <. ( Base ` ndx ) , w >. , <. ( +g ` ndx ) , ( a e. w , b e. w |-> <. ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( +g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. w , b e. w |-> <. ( ( 1st ` a ) x ( 1st ` b ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` r ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` r ) ) , a e. w |-> <. ( k ( .s ` r ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` r ) tX ( ( TopSet ` r ) |`t s ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. w , b e. w |-> ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( dist ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) >. } ) /s ( r ~RL s ) ) |
95 |
7 6 94
|
csb |
|- [_ ( .r ` r ) / x ]_ [_ ( ( Base ` r ) X. s ) / w ]_ ( ( ( { <. ( Base ` ndx ) , w >. , <. ( +g ` ndx ) , ( a e. w , b e. w |-> <. ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( +g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. w , b e. w |-> <. ( ( 1st ` a ) x ( 1st ` b ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` r ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` r ) ) , a e. w |-> <. ( k ( .s ` r ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` r ) tX ( ( TopSet ` r ) |`t s ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. w , b e. w |-> ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( dist ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) >. } ) /s ( r ~RL s ) ) |
96 |
1 3 2 2 95
|
cmpo |
|- ( r e. _V , s e. _V |-> [_ ( .r ` r ) / x ]_ [_ ( ( Base ` r ) X. s ) / w ]_ ( ( ( { <. ( Base ` ndx ) , w >. , <. ( +g ` ndx ) , ( a e. w , b e. w |-> <. ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( +g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. w , b e. w |-> <. ( ( 1st ` a ) x ( 1st ` b ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` r ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` r ) ) , a e. w |-> <. ( k ( .s ` r ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` r ) tX ( ( TopSet ` r ) |`t s ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. w , b e. w |-> ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( dist ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) >. } ) /s ( r ~RL s ) ) ) |
97 |
0 96
|
wceq |
|- RLocal = ( r e. _V , s e. _V |-> [_ ( .r ` r ) / x ]_ [_ ( ( Base ` r ) X. s ) / w ]_ ( ( ( { <. ( Base ` ndx ) , w >. , <. ( +g ` ndx ) , ( a e. w , b e. w |-> <. ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( +g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. w , b e. w |-> <. ( ( 1st ` a ) x ( 1st ` b ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` r ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` r ) ) , a e. w |-> <. ( k ( .s ` r ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` r ) tX ( ( TopSet ` r ) |`t s ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. w , b e. w |-> ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( dist ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) >. } ) /s ( r ~RL s ) ) ) |