Step |
Hyp |
Ref |
Expression |
0 |
|
crlreg |
|- RLReg |
1 |
|
vr |
|- r |
2 |
|
cvv |
|- _V |
3 |
|
vx |
|- x |
4 |
|
cbs |
|- Base |
5 |
1
|
cv |
|- r |
6 |
5 4
|
cfv |
|- ( Base ` r ) |
7 |
|
vy |
|- y |
8 |
3
|
cv |
|- x |
9 |
|
cmulr |
|- .r |
10 |
5 9
|
cfv |
|- ( .r ` r ) |
11 |
7
|
cv |
|- y |
12 |
8 11 10
|
co |
|- ( x ( .r ` r ) y ) |
13 |
|
c0g |
|- 0g |
14 |
5 13
|
cfv |
|- ( 0g ` r ) |
15 |
12 14
|
wceq |
|- ( x ( .r ` r ) y ) = ( 0g ` r ) |
16 |
11 14
|
wceq |
|- y = ( 0g ` r ) |
17 |
15 16
|
wi |
|- ( ( x ( .r ` r ) y ) = ( 0g ` r ) -> y = ( 0g ` r ) ) |
18 |
17 7 6
|
wral |
|- A. y e. ( Base ` r ) ( ( x ( .r ` r ) y ) = ( 0g ` r ) -> y = ( 0g ` r ) ) |
19 |
18 3 6
|
crab |
|- { x e. ( Base ` r ) | A. y e. ( Base ` r ) ( ( x ( .r ` r ) y ) = ( 0g ` r ) -> y = ( 0g ` r ) ) } |
20 |
1 2 19
|
cmpt |
|- ( r e. _V |-> { x e. ( Base ` r ) | A. y e. ( Base ` r ) ( ( x ( .r ` r ) y ) = ( 0g ` r ) -> y = ( 0g ` r ) ) } ) |
21 |
0 20
|
wceq |
|- RLReg = ( r e. _V |-> { x e. ( Base ` r ) | A. y e. ( Base ` r ) ( ( x ( .r ` r ) y ) = ( 0g ` r ) -> y = ( 0g ` r ) ) } ) |