Step |
Hyp |
Ref |
Expression |
0 |
|
crmx |
|- rmX |
1 |
|
va |
|- a |
2 |
|
cuz |
|- ZZ>= |
3 |
|
c2 |
|- 2 |
4 |
3 2
|
cfv |
|- ( ZZ>= ` 2 ) |
5 |
|
vn |
|- n |
6 |
|
cz |
|- ZZ |
7 |
|
c1st |
|- 1st |
8 |
|
vb |
|- b |
9 |
|
cn0 |
|- NN0 |
10 |
9 6
|
cxp |
|- ( NN0 X. ZZ ) |
11 |
8
|
cv |
|- b |
12 |
11 7
|
cfv |
|- ( 1st ` b ) |
13 |
|
caddc |
|- + |
14 |
|
csqrt |
|- sqrt |
15 |
1
|
cv |
|- a |
16 |
|
cexp |
|- ^ |
17 |
15 3 16
|
co |
|- ( a ^ 2 ) |
18 |
|
cmin |
|- - |
19 |
|
c1 |
|- 1 |
20 |
17 19 18
|
co |
|- ( ( a ^ 2 ) - 1 ) |
21 |
20 14
|
cfv |
|- ( sqrt ` ( ( a ^ 2 ) - 1 ) ) |
22 |
|
cmul |
|- x. |
23 |
|
c2nd |
|- 2nd |
24 |
11 23
|
cfv |
|- ( 2nd ` b ) |
25 |
21 24 22
|
co |
|- ( ( sqrt ` ( ( a ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) |
26 |
12 25 13
|
co |
|- ( ( 1st ` b ) + ( ( sqrt ` ( ( a ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) |
27 |
8 10 26
|
cmpt |
|- ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( a ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) |
28 |
27
|
ccnv |
|- `' ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( a ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) |
29 |
15 21 13
|
co |
|- ( a + ( sqrt ` ( ( a ^ 2 ) - 1 ) ) ) |
30 |
5
|
cv |
|- n |
31 |
29 30 16
|
co |
|- ( ( a + ( sqrt ` ( ( a ^ 2 ) - 1 ) ) ) ^ n ) |
32 |
31 28
|
cfv |
|- ( `' ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( a ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` ( ( a + ( sqrt ` ( ( a ^ 2 ) - 1 ) ) ) ^ n ) ) |
33 |
32 7
|
cfv |
|- ( 1st ` ( `' ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( a ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` ( ( a + ( sqrt ` ( ( a ^ 2 ) - 1 ) ) ) ^ n ) ) ) |
34 |
1 5 4 6 33
|
cmpo |
|- ( a e. ( ZZ>= ` 2 ) , n e. ZZ |-> ( 1st ` ( `' ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( a ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` ( ( a + ( sqrt ` ( ( a ^ 2 ) - 1 ) ) ) ^ n ) ) ) ) |
35 |
0 34
|
wceq |
|- rmX = ( a e. ( ZZ>= ` 2 ) , n e. ZZ |-> ( 1st ` ( `' ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( a ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` ( ( a + ( sqrt ` ( ( a ^ 2 ) - 1 ) ) ) ^ n ) ) ) ) |