| Step | Hyp | Ref | Expression | 
						
							| 0 |  | crnghm |  |-  RngHom | 
						
							| 1 |  | vr |  |-  r | 
						
							| 2 |  | crng |  |-  Rng | 
						
							| 3 |  | vs |  |-  s | 
						
							| 4 |  | cbs |  |-  Base | 
						
							| 5 | 1 | cv |  |-  r | 
						
							| 6 | 5 4 | cfv |  |-  ( Base ` r ) | 
						
							| 7 |  | vv |  |-  v | 
						
							| 8 | 3 | cv |  |-  s | 
						
							| 9 | 8 4 | cfv |  |-  ( Base ` s ) | 
						
							| 10 |  | vw |  |-  w | 
						
							| 11 |  | vf |  |-  f | 
						
							| 12 | 10 | cv |  |-  w | 
						
							| 13 |  | cmap |  |-  ^m | 
						
							| 14 | 7 | cv |  |-  v | 
						
							| 15 | 12 14 13 | co |  |-  ( w ^m v ) | 
						
							| 16 |  | vx |  |-  x | 
						
							| 17 |  | vy |  |-  y | 
						
							| 18 | 11 | cv |  |-  f | 
						
							| 19 | 16 | cv |  |-  x | 
						
							| 20 |  | cplusg |  |-  +g | 
						
							| 21 | 5 20 | cfv |  |-  ( +g ` r ) | 
						
							| 22 | 17 | cv |  |-  y | 
						
							| 23 | 19 22 21 | co |  |-  ( x ( +g ` r ) y ) | 
						
							| 24 | 23 18 | cfv |  |-  ( f ` ( x ( +g ` r ) y ) ) | 
						
							| 25 | 19 18 | cfv |  |-  ( f ` x ) | 
						
							| 26 | 8 20 | cfv |  |-  ( +g ` s ) | 
						
							| 27 | 22 18 | cfv |  |-  ( f ` y ) | 
						
							| 28 | 25 27 26 | co |  |-  ( ( f ` x ) ( +g ` s ) ( f ` y ) ) | 
						
							| 29 | 24 28 | wceq |  |-  ( f ` ( x ( +g ` r ) y ) ) = ( ( f ` x ) ( +g ` s ) ( f ` y ) ) | 
						
							| 30 |  | cmulr |  |-  .r | 
						
							| 31 | 5 30 | cfv |  |-  ( .r ` r ) | 
						
							| 32 | 19 22 31 | co |  |-  ( x ( .r ` r ) y ) | 
						
							| 33 | 32 18 | cfv |  |-  ( f ` ( x ( .r ` r ) y ) ) | 
						
							| 34 | 8 30 | cfv |  |-  ( .r ` s ) | 
						
							| 35 | 25 27 34 | co |  |-  ( ( f ` x ) ( .r ` s ) ( f ` y ) ) | 
						
							| 36 | 33 35 | wceq |  |-  ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) ( .r ` s ) ( f ` y ) ) | 
						
							| 37 | 29 36 | wa |  |-  ( ( f ` ( x ( +g ` r ) y ) ) = ( ( f ` x ) ( +g ` s ) ( f ` y ) ) /\ ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) ( .r ` s ) ( f ` y ) ) ) | 
						
							| 38 | 37 17 14 | wral |  |-  A. y e. v ( ( f ` ( x ( +g ` r ) y ) ) = ( ( f ` x ) ( +g ` s ) ( f ` y ) ) /\ ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) ( .r ` s ) ( f ` y ) ) ) | 
						
							| 39 | 38 16 14 | wral |  |-  A. x e. v A. y e. v ( ( f ` ( x ( +g ` r ) y ) ) = ( ( f ` x ) ( +g ` s ) ( f ` y ) ) /\ ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) ( .r ` s ) ( f ` y ) ) ) | 
						
							| 40 | 39 11 15 | crab |  |-  { f e. ( w ^m v ) | A. x e. v A. y e. v ( ( f ` ( x ( +g ` r ) y ) ) = ( ( f ` x ) ( +g ` s ) ( f ` y ) ) /\ ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) ( .r ` s ) ( f ` y ) ) ) } | 
						
							| 41 | 10 9 40 | csb |  |-  [_ ( Base ` s ) / w ]_ { f e. ( w ^m v ) | A. x e. v A. y e. v ( ( f ` ( x ( +g ` r ) y ) ) = ( ( f ` x ) ( +g ` s ) ( f ` y ) ) /\ ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) ( .r ` s ) ( f ` y ) ) ) } | 
						
							| 42 | 7 6 41 | csb |  |-  [_ ( Base ` r ) / v ]_ [_ ( Base ` s ) / w ]_ { f e. ( w ^m v ) | A. x e. v A. y e. v ( ( f ` ( x ( +g ` r ) y ) ) = ( ( f ` x ) ( +g ` s ) ( f ` y ) ) /\ ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) ( .r ` s ) ( f ` y ) ) ) } | 
						
							| 43 | 1 3 2 2 42 | cmpo |  |-  ( r e. Rng , s e. Rng |-> [_ ( Base ` r ) / v ]_ [_ ( Base ` s ) / w ]_ { f e. ( w ^m v ) | A. x e. v A. y e. v ( ( f ` ( x ( +g ` r ) y ) ) = ( ( f ` x ) ( +g ` s ) ( f ` y ) ) /\ ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) ( .r ` s ) ( f ` y ) ) ) } ) | 
						
							| 44 | 0 43 | wceq |  |-  RngHom = ( r e. Rng , s e. Rng |-> [_ ( Base ` r ) / v ]_ [_ ( Base ` s ) / w ]_ { f e. ( w ^m v ) | A. x e. v A. y e. v ( ( f ` ( x ( +g ` r ) y ) ) = ( ( f ` x ) ( +g ` s ) ( f ` y ) ) /\ ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) ( .r ` s ) ( f ` y ) ) ) } ) |